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SUMMARY 

 

Brains display very high-level parallel computation, fault-tolerance, and 

adaptability, all of which are properties that we struggle to recreate in engineered systems. 

The neurocomputer (an organic computer built from living neurons), where a 

complicated language is naturally programmed and organized in the system, seems 

possible and may lead to a new generation of computing device that can operate in a 

brain-like manner. Cultured neuronal networks on multi-electrode arrays (MEAs) provide 

a complex network connectivity pattern and greater freedom to manipulate and to access 

the dynamics of groups of neurons, and become one of the best candidates for the next 

neurocomputer.  

I explored the possibility of the neurocomputer by studying whether we can show 

goal-directed learning, one of the most fascinating behavior of brains, in cultured 

networks. Inspired by the brain, which needs to be embodied in some way and interact 

with its surroundings in order to give a purpose to its activities, we have developed tools 

for closing the sensory-motor loop between a cultured network and a robot or an artificial 

animal (an animat). This embodied hybrid neural-robotic system is termed a “hybrot”. 

Unlike in the brain, sensory-motor mappings in a hybrot are defined by the experimenters. 

In order to efficiently find an effective closed-loop design among infinite potential 

mappings, I constructed a biologically-inspired simulated network, which exhibits similar 

activity dynamics found in the cultured networks. By using this simulated network, I 

designed a statistic that can effectively and efficiently decode network functional 

plasticity better than some other existing statistics. Furthermore, in order to encode 
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sensory information about the interactions between a hybrot and its environment, I 

designed several stimulation protocols and an adaptive training algorithm that worked 

cooperatively to direct network plasticity, and thus the hybrot’s behavior toward a user-

defined goal. By closing the sensory-motor loop with these decoding and encoding 

designs, we successfully demonstrated a simple adaptive goal-directed behavior: learning 

to move in a user-defined direction, and further showed that multiple tasks could be 

learned simultaneously. These results suggest that even though a cultured network lacks 

the 3-D structure of the brain, it still can be functionally shaped and show meaningful 

behavior. Moreover, this demonstrates the possibility of utilizing living neurons for an 

engineering purpose (e.g., control a robot to achieve a goal). 

To our knowledge, this is the first demonstration of promising goal-directed 

learning in a hybrot controlled by cultured neurons. Extending from these findings, I 

further proposed a research plan to search for mappings that could help verify the 

maximal learning capacity (or even true intelligence) of the cultured network, which can 

help elucidate the possibility of the neurocomputer as the agent to future intelligent 

machines. Knowledge gained from effective closed-loop designs also provides insights 

about learning and memory in the nervous system, which could influence the design of 

future artificial neural networks, more effective neuroprosthetics, and even the use of the 

networks themselves as a biologically-based control system. 
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CHAPTER 1 

I
TRODUCTIO
 

 

1.1 Overview 

Brains display very high-level parallel computation, fault-tolerance, and 

adaptability, all of which are properties that we struggle to recreate in engineered systems. 

Scientists and engineers have made attempts to incorporate ideas from neuroscience into 

computing in order to build machines that operate in a brain-like manner. The 

neurocomputer (an organic computer built from living neurons), where a complicated 

language is naturally programmed and organized in the system, seems possible and may 

lead to a new generation of computing devices. The first neurocomputer consisted of two 

leech neurons, which could successfully perform arithmetic sums by encoding numbers 

in the injected currents (Chase and York, 1999). However, the range of numbers that the 

system could encode was limited; it was believed that this could be solved by recruiting 

more neurons with a more complex connectivity pattern (Garcia et al., 2001).  

Advances in the biocompatibility of materials and electronics have allowed 

neurons to be grown directly on devices called multi-electrode arrays (MEAs), through 

which it is possible to stimulate and record neuronal electrical activity at the network 

level (Gross et al., 1977; Pine, 1980; Blum et al., 1991). Cultured neuronal networks on 

MEAs provide not only a much more complex connectivity pattern but also a much 

greater freedom to manipulate and to access the dynamics of groups of neurons, and 

become one of the best candidates for the next neurocomputer. Besides the access of 

electrodes, the cultured network’s activity can be recorded with microscopic imaging 

(Bonhoeffer and Staiger, 1988; Parsons et al., 1989; Parsons et al., 1991; Potter, 1996); 

and stimulation can be administered by optical (Bucher et al., 2001; Suzurikawa et al., 

2007) and pharmacological (Segal, 1983; Gibbs et al., 1997; Baruchi and Ben-Jacob, 
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2007) means. These versatilities further elevate the role of cultured networks in 

neurocomputer development.  

The cultured network model used in this work was dissociated rat cortical neurons 

grown on MEAs (Figure 1.1). Compared to cultured brain slices, dissociated cultures 

provide an additional flexibility, where the network’s size and connectivity pattern can be 

controlled (Corey et al., 1991; Maher et al., 1999; Kam et al., 2001). Our dissociated 

cultures are obtained from E18 rat embryos by mechanical and enzymatic dissociation 

(Banker and Goslin, 1998b; Potter and DeMarse, 2001). Usually around 50,000 cells 

(including neurons and glia) are plated onto an MEA. Teflon-sealed dishes (Potter and 

DeMarse, 2001) are placed in an incubator, which allows us to have a stable and 

infection-free environment. Our custom-made stimulator (Wagenaar et al., 2004) is 

capable of stimulation at 59 electrodes, which allows us to deliver stimuli with complex 

spatiotemporal patterns and record the activity at the same time. This system provides 

long-term (up to months) accessibility and controllability in the highly-interconnected 

neuronal network, from which a more complex computational capability, than arithmetic 

summation, might emerge. 

The objective of this work is to explore the possibility of the neurocomputer by 

demonstrating one of the most important features of the brain, goal-directed learning, in 

our MEA cultures. Goal-directed learning involves modification of a network’s input-

output function, or stimulus-response transformation, which leads to changes in responses 

toward a desired outcome, and was found occur in the animal cortex (Balleine and 

Dickinson, 1998; Corbit and Balleine, 2003). However, to our knowledge, no study has 

yet promisingly shown goal-directed learning in cultured networks. Similar to how the 

brain needs to be embodied in some way and interact with its surroundings in order to 

give a purpose to its activities, learning in the cultured network cannot be evaluated when 

disconnected from a body or isolated from the environment. We have developed a closed-

loop paradigm (Potter et al., 1997; DeMarse et al., 2001; Potter et al., 2006) consisting of 
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a sensory-motor loop between a dissociated culture and a robot or an artificial animal (an 

animat) (Meyer and Wilson, 1991) in order to study sensory processing, memory 

formation, and behavioral control. This embodied hybrid neural-robotic system is termed 

a “hybrot” (Figure 1.2) (Potter et al., 2006). Compared to animal models, the dissociated 

cultured network is a simpler and more controllable system to investigate basic network 

computations; confounding factors such as sensory inputs, attention, and behavioral 

drives are absent, while diverse and complex activity patterns remain (Gross and 

Kowalski, 1999; Shefi et al., 2002; Wagenaar et al., 2006c; Rolston et al., 2007). 

However, this also implies that the sensory-motor loop that re-embodies the dissociated 

culture needs to be defined artificially by the experimenters. Designing a sensory-motor 

loop that allows the embodied network to interact with the environment in a meaningful 

way, such as learning to reach a specific goal, becomes extremely challenging, since the 

connectivity in a dissociated cultured network is not predictable.  
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Figure 1.1. Dissociated cortical culture on multi-electrode arrays (MEAs): An MEA (Top), 

with an 8 by 8 grid of electrodes (Middle), and neurons (Bottom). 
 

This work is focused on finding an effective closed-loop design among infinite 

potential mappings in order to show goal-directed learning behaviors in embodied 

dissociated cultures. Finding effective mappings not only enables the utilization of living 

neurons for engineering purposes (e.g., control a robot to achieve a goal), but is also the 

step toward evaluating the learning capacity (or even true intelligence) of the embodied 

culture, which can help elucidate the possibility of the neurocomputer as the future of 

intelligent machines. Even though there is still a huge gap between demonstrating 

cultured networks’ ability for goal-directed learning and actually constructing an organic 

computer applicable to solving problems that we use artificial intelligence for these days, 
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I believe that this is the necessary first step. Furthermore, the knowledge gained from 

effective mappings also provides insights about learning and memory in the nervous 

system, which could further lead to direct development of an electronic computer, or new 

artificial intelligence, based on the operational principles of biological brains.  

 

 

Figure 1.2. The components of a hybrot, an embodied hybrid neural-robotic system: A 

hybrot consists of a cultured neuronal network, a robot, and a sensory-motor loop. In order to embody a 

cultured network for goal-directed learning, four fundamental elements are needed for closing the sensory-

motor loop: A. Decoding: network activity recorded from the cultured network is transformed into the 

robot’s motor commands. B. Encoding: the interaction between the robot and its environment is detected by 

the robot’s sensors and transformed into an electrical stimulation fed back to the cultured network. C. The 

behavioral performance is also transformed into stimulation based on a training algorithm.  

 

1.2 Plasticity in disembodied cultured networks 

Previous studies have demonstrated the potential for disembodied cultured 

networks on MEAs to achieve functional plasticity (see Table 1.1). This neural plasticity 

provides a potential learning capability to cultured networks. Jimbo et al. used a localized 
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tetanic stimulus to induce long-lasting changes in the network responses that could be 

either potentiated or depressed depending on the electrode used to evoke the responses 

(Jimbo et al., 1999). Moreover, we and others previously found that such tetanus-induced 

plasticity was spatially localized and asymmetrically distributed (Ruaro et al., 2005; Chao 

et al., 2007c). By delivering two different tetanic stimulation patterns, Ruaro et al. trained 

a cultured network to discriminate the spatial profiles of the stimuli. Furthermore, by 

stimulating the network at two sites with different frequencies, Eytan et al. found that 

network responses adapted selectively to different stimulation frequencies: attenuated 

responsiveness to the more frequent (> 0.1 Hz) input and increased responsiveness to the 

rarely delivered (< 0.1 Hz) stimuli. More importantly, this selective adaptation was a 

reversible process (Eytan et al., 2003). Bakkum et al. showed a different form of 

plasticity, where the timing of non-synaptic responses changed and adapted to different 

spatiotemporal patterns of paired stimuli (Bakkum et al., 2007). Long-term plasticity 

(hours to days) in the spontaneous activity was also discovered, where new spontaneous 

activity patterns were imprinted or erased after a tetanus (Madhavan et al., 2007b) or after 

a chemical stimulation (Baruchi and Ben-Jacob, 2007). These results indicate that 

different stimulation patterns and protocols can shape diverse functional connectivity in 

cultured networks. Further understanding of the rules that govern plasticity in embodied 

cultured networks might lead to effective methods to “program” living neurons in order 

to learn a desired task. 
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Table 1.1. Overview of functional plasticity in dissociated cultures 

Reference Inducing method Measures Principal results 

(Maeda et al., 

1998a) 

Increased probability of stimulus-evoked 

bursting. 

(Jimbo et al., 

1999) 
Pathway-specific plasticity. 

(Ruaro et al., 

2005) 

Enhanced discrimination between two spatial 

profiles of the stimuli. 

(Chao et al., 

2007c) 

Stimulus-

evoked 

responses 

Region-specific plasticity. 

(Madhavan et 

al., 2007b) 

Tetanization 

(> 20Hz) 

Spontaneous 

bursts 

Changes in the spatiotemporal pattern of 

spontaneous bursts. 

(Eytan et al., 

2003) 

Responses to “slow” stimuli enhanced, to “fast” 

stimuli reduced (reversible). 

(Bakkum et al., 

2007) 

Paired electrical 

stimulation 

Stimulus-

evoked 

responses Stimulation-pattern-dependent changes in the 

timing of presynaptic responses. 

(Baruchi and 

Ben-Jacob, 

2007) 

Chemical 

stimulation 

Spontaneous 

and evoked 

bursts 

New bursting patterns imprinted for days. 

 

1.3 Learning in embodied cultured networks 

Cultured networks have been embodied previously (see Table 1.2). An embodied 

cultured network’s ability to control an animat or a mobile robot was demonstrated 

without a specifically defined goal (DeMarse et al., 2001; Martinoia et al., 2004). In 

another case, animats were designed to avoid obstacles (Cozzi et al., 2005) or follow 

objects (Bakkum et al., 2004), but deterministically and without learning. By using an 

acute slice of a lamprey brainstem to control a mobile robot, Mussa-Ivaldi et al. 

demonstrated the embodied in vitro network’s tendency to compensate the sensory 

imbalance caused by artificially altering the sensitivity of the sensors at one side of the 

robot. Without a pre-defined goal and external training stimulation, long-term changes in 
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behavior in response to the sensory imbalance were found in embodied lamprey 

brainstems (Reger et al., 2000), however, the changes were unpredictable (Karniel et al., 

2005). With feedback training and a simple user-defined goal, Shahaf and Marom 

showed unidirectional learning in an isolated (not embodied) MEA culture, where the 

culture was trained to induce an electrode-specific increase in response. This simple form 

of learning was achieved by a binary training: to stop a periodic stimulation at one 

electrode when the desired response level at the target electrode was obtained (Shahaf 

and Marom, 2001). The same training induced underlying changes in network functional 

connectivity, which resulted in a different synchrony of spontaneous activities (Li et al., 

2007). These results demonstrate the feasibility to shape or to rewire embodied cultured 

networks, particularly, to direct this change. However, in order to scale to more complex 

behaviors, we need to create more structured training stimuli and detailed activity metrics, 

and to incorporate a more realistic interaction between the embodied network and its 

environment.  

1.4 Toward more complex goal-directed learning behaviors 

 A more complex goal-directed learning in embodied cultured networks was 

demonstrated using the closed-loop hybrot design described by Novellino et al. (2007), 

where the performance of an object-avoidance task in an embodied dissociated culture 

was improved by a binary training (also see Table 1.2). Detailed comparisons between 

Novellino’s model and the closed-loop design proposed in this work are shown in Table 

1.3. The details of this comparison will be explained in subsequent chapters. In summary, 

the advantages of our closed-loop design are: (1) using a detailed decoding statistic that 

can detect network functional plasticity effectively and efficiently; (2) continuously 

delivering stimulation to mimic continuous sensory inputs and ongoing processing in the 

brain; and (3) more variety of training stimulation delivered contingent on the behavioral 

performance. 
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1.4.1 Detailed decoding statistics  

Inspired by the differential firing rate statistic described by Wagenaar et al. (2006), 

I designed a statistic called the center of activity trajectory (CAT) to detect network 

functional plasticity in living MEA cultures (Chao et al., 2007c). This statistic is more 

capable of revealing the functional plasticity of a network than other existing statistics, 

including the firing rate measure used in Novellino’s model, and thus is a better indicator 

of learning. Furthermore, CAT incorporates population activity recorded at all electrodes, 

rather than the single electrode activity used in Novellino’s model, which is a more 

robust coding strategy with computationally desirable properties, such as mechanisms for 

noise removal (Pouget et al., 2000).  

 

Table 1.2. Overview of embodied cultured network systems and feedback training 

Reference System Emb. Training algorithm Goal Principal results 

(DeMarse et 

al., 2001) 
Animat — — 

(Martinoia et 

al., 2004) 
Robot — — 

Development of the 

framework for the 

bi-directional 

interface. 

(Bakkum et 

al., 2004) 
Robot — 

Follow a 

moving 

object. 

(Cozzi et al., 

2005) 
Robot — 

Avoid 

objects. 

Successful 

utilization of 

deterministic input-

output functions in 

networks to achieve 

the goals. 

(Novellino et 

al., 2007) 

Dissociated 

cultures 

Robot 

Binary training:  
 
Tetanization at the 

electrode 

corresponding to 

collision side after the 

robot hits an obstacle. 

Avoid 

objects. 

One example 

showing an 

improvement of 

performances during 

the obstacle-

avoidance task. 

(Reger et al., 

2000) 

Lamprey 

brainstem 
Robot — 

Phototactic 

behavior. 

Adaptive 

compensation to 

sensory imbalance. 
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Table 1.3. Comparisons between two models for more complex goal-directed learning 

 Design by 
ovellino et al. (2007) Design in this work 

Environment 
2-D circular arena with several 

objects. 

2-D circular arena divided into four 

quadrants. 

Hybrot Robot + MEA culture. Animat + MEA cultures. 

Sensory inputs 
Distance measures from two sensors 

(left/right). 

Sense of which quadrant animat is in / 

sense of being in or outside the 

circular arena. 

Motor outputs Speeds of two wheels (left/right). 2-D incremental movement. 

User-defined goal Avoid objects. 
Move toward and stay close to the 

center of the arena. 

Decoding 

Instantaneous firing rates at two 

recording electrodes with winner-

takes-all (WTA) mechanism. 

Center of activity (CA) of population 

responses at all electrodes. 

Encoding 

If sensory input reaches a threshold, 

deliver a stimulus (max frequency 

1Hz); else, no stimulation. 

Deliver one of the four context-

control probing sequences (CPSs) 

based on sensory input. 

Sensory-

motor 

loop 

Training 

algorithm 

Apply 20Hz tetanus at the electrode 

used to encode movement for the 

collision side if the robot hits an 

obstacle. 

Adaptive algorithm to select random 

background stimulation (RBS) if the 

animat moves closer to the center of 

the arena, or a patterned training 

stimulation (PTS) if not. 

Reaction time 1 Hz 0.2 Hz 

Results 

Preliminary: improvement of 

performances during the object-

avoidance task for one example, with 

no proper control and statistical tests. 

Quadri-task learning in simulated 

networks, uni-task learning in living 

networks.  

 

1.4.2 Continuous stimulation to maintain a more steady level of responses 

 Our closed-loop design consists of continuous stimulation with an aggregate 

frequency of 3 Hz, which is analogous to continuous sensory inputs and ongoing 

processing in the brain. Continuous external inputs reduced the occurrence of network-

wide synchronize bursts (Chao et al., 2005; Wagenaar et al., 2005), which are the most 

dominant pattern of spontaneous activity in MEA cultures (Gross et al., 1993a; Wong et 
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al., 1993; Kamioka et al., 1996; Gross and Kowalski, 1999). This maintains a more 

steady level of firing in the network, where changes in network responses can more 

directly reflect neural learning induced by training. The significant difference in 

spatiotemporal structures and magnitudes between spontaneous activity and stimulus-

evoked responses might create an artifact in instantaneous firing rates, which might bias 

the encoding process in Novellino’s model, where the object-avoidance behavior of the 

robot depended more on the on/off of the stimulation, but less on the training-induced 

changes in network responses. 

1.4.3 Variety of training stimulation with adaptive selection 

Because the connectivity in a cultured network is not predictable, the effects of a 

given training stimulation cannot be known a priori. Delivering any training stimulation 

when the performance is undesired cannot guarantee the network is shaped toward a 

desired state. Therefore, unlike in Novellino’s model where fixed training stimulation 

was used, we delivered training stimulation contingent on the behavioral performance in 

order to direct changes in network connectivity and shift the behavior toward the desired 

behavior.  

By incorporating the designs of decoding, encoding, and training, we successfully 

demonstrate goal-directed learning in simulated networks (Chao et al., 2007a), and living 

networks (Chao et al., 2007b). This approach could be applied with different and more 

complex goal-directed behaviors, which may provide a useful in vitro model for studying 

sensory-motor mappings, learning, and memory in the nervous system. This could further 

lead to direct development of more advanced artificial neural networks, more robust 

computing methods, and even the use of neurally-controlled animats themselves as 

biologically-based control systems. 
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1.5 Toward the neurocomputer 

By using a hybrid system, we successfully demonstrated a simple adaptive goal-

directed behavior: learning to move in a user-defined direction (Chao et al., 2007b). We 

further showed that multiple tasks could be learned simultaneously (Chao et al., 2007a). 

These results suggest that even though a cultured network lacks the 3-D structure of the 

brain, it still can be functionally shaped and show meaningful behavior. However, 

whether the cultured network could only express these simple behaviors or also achieve a 

complex a goal remains unknown. 

In order to evaluate the possibility of developing the neurocomputer by using 

cultured networks, I believe it is necessary, although not sufficient, to understand what 

capacity cultured networks have for being intelligent. The closed-loop design described 

above is just a subset of infinite possibilities, and the behavior derived from it does not 

represent the true capabilities of the embodied cultured network. Therefore, not only do 

we need to find the “optimal” sensory-motor mappings, but also the optimal body. This is 

analogous to our brains, which are optimized through evolution to control our bodies, 

which are also optimized to be controlled by the brain. My future work will focus on 

finding the optimal combinations of a body and sensory-motor mappings, in order to 

verify the maximal learning capacity (or even true intelligence) of the embodied cultured 

network.  

1.6 Dissertation overview 

In order to efficiently find an effective closed-loop design among infinite 

potential mappings, I first embodied a biologically-inspired simulated network to explore 

many different possible sensory-motor mappings and training algorithms. The simulated 

network provides savings in preparation time and an accessibility to the detailed 

properties of the network that cannot be directly measured from our experimental setups. 

The details of the simulated network will be described in Chapter 2. The rest of the 
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dissertation is organized by the approaches described in Section 1.4. In the last chapter, I 

summarize our findings and discuss the gap from these findings to my own vision of the 

neurocomputer, and propose a research plan to narrow this gap. The overview of chapters 

and appendices are shown in Table 1.4.  

 

Table 1.4. Dissertation overview 

Chap. Contents Related appendices 

2 Design of the biologically-inspired simulated network, 

and its validation. 
A. Model details. 

3
i
 The center of activity (CAT): an activity statistic that 

decodes network functional plasticity. 

B. Calculation of other existing 

statistics for comparison. 
 
C. Experimental setups for MEA 

cultures. 

4
ii
 

Random background stimulation (RBS): a stimulation 

protocol that stabilizes stimulus-induced changes in 

network synaptic connectivity. 

F. Stabilizing effects in living MEA 

cultures
iii
. 

5
iv
 Multi-task goal-directed learning in the simulated 

network. 

G. Effects of context-control probing 

sequence (CPS) stimulation. 
 
H. Effects of patterned training 

stimulation (PTS). 

6
v
 Goal-directed learning in living MEA cultures, and its 

application to neurorehabilitation. 
 

7 
Conclusions and future work: A research proposal for 

evaluating the maximal learning capability of embodied 

cultured networks. 

I. Future study of plasticity-inducing 

stimuli with different spatiotemporal 

complexity.  

                                                 

 

 
i Adapted from: Zenas C. Chao, Douglas J. Bakkum, and Steve M. Potter (2007): Region-specific network plasticity in 

simulated and living cortical networks: comparison of the Center of Activity Trajectory (CAT) with other metrics. J. 

Neural Eng. 4, 294-308. 
ii Adapted from: Zenas C. Chao, Douglas J. Bakkum, Daniel A. Wagenaar, and Steve M. Potter (2005): Effects of 

random external background stimulation on network synaptic stability after tetanization: a modeling study. 

Neuroinformatics 3:3, 263–280. 
iii To be submitted as: Radhika Madhavan, Zenas C. Chao, and Steve M. Potter (2007): Electrical control of population 

bursting aids functional plasticity in cortical networks. 
iv Under review as: Zenas C. Chao, Douglas J. Bakkum, and Steve M. Potter (2007): Shaping embodied neural 

networks for adaptive goal-directed behavior. PLoS Computational Biology. 
v To be submitted as: Zenas C. Chao, Douglas J. Bakkum, and Steve M. Potter (2007): Feedback training of electrical 

stimuli in a cortical network: learning and neurorehabilitation. The first two authors contributed equally. 
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In addition, network plasticity in other different forms, and the possible underlying mechanisms, are 

described in the following two appendices: 

D. Network plasticity in spontaneous bursts
vi
. 

E. Network plasticity in the timing of direct electrically-evoked action potentials (dAPs)
vii
. 

                                                 

 

 
vi Adapted from: Radhika Madhavan, Zenas C. Chao, and Steve M. Potter (2007): Plasticity of recurring 

spatiotemporal activity patterns in dissociated cortical networks. Physical Biology, 4, 181-193. 
vii Under review as: Douglas J. Bakkum, Zenas C. Chao,and Steve M. Potter (2007): Long-term activity-dependent 

plasticity of action potential propagation in cortical networks. PLoS One. 
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CHAPTER 2 

BIOLOGICALLY-I
SPIRED SIMULATED 
ETWORKS 

 

Neuronal networks cultured on multi-electrode arrays (MEAs) are helpful model systems to 

understand brain functions because they reduce the brain’s overwhelming complexity. In order to find an 

effective closed-loop design among infinite potential mappings, I introduced a biologically-inspired 

simulated network, where detailed properties of individual neurons and synapses could be measured and 

manipulated. The simulation also provides the ease of experimental setups, where possible closed-loop 

design candidates can be evaluated in a systematic and controllable way. In order to make the simulated 

network useful for helping closed-loop design in embodied MEA cultures, the simulated network was 

constructed to mimic the biological properties in living MEA cultures. The simulated network successfully 

demonstrated various known properties of the MEA cultures found in our lab and others, and predicted 

several other complex properties that were further validated in living MEA cultures. This demonstrates its 

usefulness for studying network dynamics that are difficult to access and control in living networks.  

2.1 Introduction 

 For studying the long-term network-level dynamics in dissociated cultures, a 

multi-electrode array (MEA) is advantageous over patch-clamp or sharp electrodes since 

recording and stimulation can be performed at multiple locations for months. By applying 

MEA technology, researchers are able to record and electrically stimulate cultured 

networks at multiple spatial locations (Gross et al., 1993b; Tateno and Jimbo, 1999; 

Shahaf and Marom, 2001). However, recording and stimulation techniques on living 

nervous systems still have certain limitations, especially for large networks, such as 

limited accessibility of membrane potential of every neuron and limited controllability of 

stimulation on specific group of neurons. In order to overcome these limitations, 

computational network models have been introduced.  

Network-level properties have been studied on randomly connected network 

models (Mongillo and Amit, 2001; Aviel et al., 2003), locally connected network models 

(Latham et al., 2000a; Mehring et al., 2003), hippocampal slice models (Ermentrout and 

Kopell, 1998; Biswal and Dasgupta, 2002), and cortical slice models (Marinaro and 

Scarpetta, 2004). Moreover, the activity-dependent self-organization of neurons has been 

studied in a detailed large network model consisting of 10,000 neurons (Izhikevich et al., 
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2004; Izhikevich, 2005). A complex brain-based model (Darwin X), which included 

90,000 neurons to incorporate detailed anatomy and physiology of the hippocampus, was 

embodied with a real robot to perform navigation tasks, where functional hippocampal 

pathways for spatial memory were studied (Krichmar et al., 2005). These network models 

were built to mimic the biological properties of living neuronal networks in order to study 

unknown underlying mechanisms, instead of for engineering applications of traditional 

artificial neural networks. The advantages of using simulated network models to study 

nervous systems are: (1) the accessibility of quantities hard to measure in actual 

experiments; (2) the controllability of experimental conditions hard or impossible to 

control and/or maintain in actual experiments; (3) the ease of experimental manipulations; 

(4) cheaper; (5) ability to repeat experiments exactly, with the same random seed, with 

only one small change; and (6) capability to do more experiments in less time. 

 Here, I constructed a simulated network to mimic the properties of the living 

dissociated cortical network cultured on an MEA. An impressive fidelity between this 

simulated model and MEA cultures was found in several validation experiments. The 

detailed features of this simulated model are described in following sections, and their 

detailed implementations are listed in Appendix A. 

2.2 Model features 

2.2.1 Overview 

 The Neural Circuit SIMulator (CSIM) (Natschlager et al., 2003)
viii
 was modified 

to produce artificial neural networks with the following features. 1,000 leaky integrate-

and-fire (LIF) neurons with a total of 50,000 synapses were placed randomly in a 3 mm 

by 3 mm area (see Figure 2.1B). All synapses were frequency-dependent (Markram et al., 

                                                 

 

 
viii
 http://www.lsm.tugraz.at/csim/index.html 
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1998b; Izhikevich et al., 2004) to model synaptic depression; the synaptic efficacy was 

determined by the probability of release of neurotransmitters depending on the 

mechanism of frequency dependence. 70% of the neurons were excitatory, with STDP 

(Song et al., 2000) at all excitatory synapses. The other neurons were inhibitory (30%) 

(Marom and Shahaf, 2002). The distribution of the synaptic connection distances 

followed the distribution found by Segev and Ben-Jacob (Segev and Ben-Jacob, 2000): 

neurons tend to make many short synaptic connections but a few long ones as well. The 

number of synaptic connections per neuron followed a Gaussian distribution and each 

neuron had 50 ± 15 synapses onto other neurons. The conduction delay was proportional 

to the synaptic connection distance, and the conduction velocity was set to be 0.3 m/s 

(Kawaguchi and Fukunishi, 1998). Gaussian random noise was introduced into each 

neuron independently as fluctuations in membrane voltage: 30% of the neurons (“self-

firing neurons”) had variance at a high enough level to initiate spikes (Latham et al., 

2000a; Latham et al., 2000b), while the rest exhibited only subthreshold fluctuations. An 

8 by 8 grid of electrodes with 333 µm inter-electrode spacing was included. All 

electrodes could be used for stimulation, while 60 of these, except corner electrodes 11, 

18, 81 and 88 in column-row (CR) number, were used for recording (Figure 2.1D).  

 Some differences between the simulated neural network and our living network 

should be noted. In the simulated network, external stimulation was set to generate 

activity only on nearby neurons’ “cell bodies”; an electrode affected about 76 neurons 

(see Section 2.2.2.4). However, electrical stimulation applied to our cultured neurons by 

an MEA could also evoke action potentials on axons (McIntyre and Grill, 2002; 

Wagenaar et al., 2004), generating spikes on neurons that may be far from the electrode, 

directly without synaptic transmission. Furthermore, little experimental evidence exists 

for the number of neurons or the range that one stimulus electrode could affect in 

cultured living networks. 
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2.2.2 Detailed features 

 The exponential Euler method was used for numerical integration (Hochbruck et 

al., 1998). The values of parameters and their implementations in CSIM are described in 

Appendix A. Most of the parameters in the simulated network were approximated from 

studies of acute slices (Markram et al., 1998b; Song et al., 2000), retinal networks (Yang 

and Masland, 1992), and from the simulation of neocortical networks (Froemke and Dan, 

2002; Izhikevich et al., 2004; Izhikevich, 2005), others were determined in various 

validation experiments. 

2.2.2.1 Neuron model 

 1,000 neurons were placed randomly in a 3 mm by 3 mm area (Figure 2.1B). In 

real MEAs, we plate rat cortical neurons in an area larger than the dimension of the 

electrode grid, which is 1.4 mm by 1.4 mm (Figure 2.1A), to ensure every electrode has 

neurons around it. The 3 mm by 3 mm area for the simulated network is an estimation. 

2.2.2.1.1 Leaky integrate-and-fire (LIF) neuron 

 A standard LIF neuron model was implemented where the membrane potential Vm 

of a neuron is given by: 

 

 )()( noisesynmrestm
m

m IIRVV
dt

dV
+⋅+−−=⋅τ      [Equation 2.1] 

 

Vm: membrane potential 

Rm: membrane resistance 

τm: the membrane time constant, (= Cm*Rm), where Cm: membrane capacitance 

Isyn: the current supplied by the synapses 

Inoise: a Gaussion random variable with zero mean and a given variance noise 
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Figure 2.1. Living MEA culture vs. simulated network: The simulated neural network and 
stimulation electrodes were constructed to mimic the dissociated cultured network and MEA setup. A. A 

view of a living MEA culture with 59 electrodes. B. The structure of a simulated network with 1,000 LIF 

neurons located in a region of 3 mm by 3 mm. The reddish circles indicate the excitatory neurons, the 

bluish squares indicate the inhibitory neurons, the reddish lines represent the excitatory synapses, and the 

bluish lines represent the inhibitory synapses (see colorbars). All neurons and synapses are shown. The 

locations of electrodes are shown in black circles. 
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 At time t= 0, Vm is set to Vinit. If Vm exceeds the threshold voltage Vthresh, it is reset 

to Vreset and hold there for the length Trefract of the absolute refractory period. An example 

of the postsynaptic current and the membrane potential of a neuron receiving several 

action potentials is shown in Figure 2.1. 

 

 

Figure 2.2. Evoked spikes in a LIF neuron: Spikes from another neuron (A) evoked synaptic 
currents at the postsynaptic neuron (B), which increase the membrane potential (Vm) in the postsynaptic 

neuron. A spike (red vertical lines) is evoked at the neuron, when Vm is higher than a threshold (C). 
 

2.2.2.1.2 Self-firing 

 30% of the neurons (self-firing neurons) had Inoise (see Equation 2.1) with 

variance at a high enough level to initiate spikes (Latham et al., 2000a; Latham et al., 

2000b), while the rest exhibited only subthreshold fluctuations. Different levels of the 

standard deviation of Inoise introduced to the self-firing neurons caused different 

spontaneous activity patterns: the rate of synchronized spontaneous bursting (see Section 
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2.3.1), increased as the standard deviation of Inoise increased (Figure 2.3). The bursting 

rate found in living cortical cultures is generally between 1 to 10 bursts per minute. In 

order to obtain the similar result, the standard deviation of 30 nA was added at each 

integration time step for self-firing neurons, and 10 nA was added for non-self-firing 

neurons according to the results shown in Figure 2.3. 

 

 

Figure 2.3. Determination of noise levels in self-firing and non-self-firing neurons:  The 
spontaneous bursting frequency increases as the standard deviation of the Gaussian noise added at each 

integration time step increases. For the non-self-firing neurons, the noise level was set at 10 nA, where the 

neurons only exhibited subthreshold fluctuation without spontaneous firing. For the self-firing neurons, the 

noise level was set at 30 nA, where spontaneous network bursting occurred at 1 to 10 bursts per minute, 

which is similar to the frequency found in living MEA cultures. 
 

2.2.2.2 Synapse model 

2.2.2.2.1 Excitatory vs. inhibitory 

 70% of the neurons were excitatory, which connected to other postsynaptic 

neurons with excitatory synapses, and the other neurons were inhibitory (30%) (Marom 

and Shahaf, 2002). The setup of excitatory and inhibitory synapses is described later in 

Section 2.2.2.5. The relations between several properties of spontaneous bursting and the 

proportion of inhibitory neurons are shown in Figure 2.4. We observed at most 15% 
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GABAergic neurons in our cultures (Madhavan et al., 2007a), which were within the 0- 

30% range where the burst frequency, which is reversely proportional to the inter-burst 

interval (Figure 2.4A), and the burst duration (Figure 2.4B) remained at constant levels. 

 

 

Figure 2.4. The size of inhibitory neuron population affected spontaneous bursting 

properties:  Spontaneous bursts were observed in the simulated network even without inhibitory neurons 
(100% excitatory neurons). The proportion of inhibitory neurons affected the interval between two 

consecutive bursts (A), the duration of a burst (B), and the number of spikes within a burst (C). 
 

2.2.2.2.2 Frequency-dependent dynamics 

 All synapses were frequency-dependent (Markram et al., 1998b; Izhikevich et al., 

2004) to model synaptic depression; the synaptic efficacy was determined by the 

probability of release of neurotransmitters depending on the mechanism of frequency 

dependence (del Castillo and Katz, 1954; Betz, 1970). The model is based on earlier 

concepts of the refractoriness of the release process (Zucker, 1989), which can be 

rephrased by stating that the fraction (U) of the synaptic efficacy used by an action 

potential (AP) becomes instantaneously unavailable for subsequent use and recovers with 

a time constant of D. The fraction of available synaptic efficacy is termed R. The running 

value of U is referred to as u, where U remains a parameter that applies to the first AP in 

a train. u decays with a single exponential, τ, to its resting value U. The frequency-

dependent dynamics are governed by the following equations: 
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    [Equations 2.2] 

 

Rn: the fraction of available synaptic efficacy at time step n 

U: utilization of synaptic efficacy 

un: and the running value of U at time step n 

isi: the time between nth and (n+1)th APs  

D: time constant of recovery from the depression  

EPSPn: excitatory postsynaptic potential and time step n 

W: the synaptic weight 

∆t: the time from previous arrival of AP to the simulation time 

τ: the time constant of decay of responses 

 

 Intuitively, the excitatory postsynaptic potential (EPSP) of the synapse is 

proportional to the synaptic weight (W), the available synaptic efficacy (Rn), and the 

initial capacity (U); and is increased when a presynaptic spike hits the synapse, otherwise 

decays exponentially with the time constant τ.  

2.2.2.2.3 Spike-timing-dependent plasticity (STDP) 

 Both long-term potentiation (LTP) and long-term depression (LTD) of synapses 

are induced through STDP: firing of a postsynaptic neuron immediately after a 

presynaptic neuron results in LTP of synaptic transmission, and the reverse order of firing 

results in LTD (Desmond and Levy, 1983; Gerstner et al., 1996; Markram et al., 1997; Bi 
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and Poo, 1998). Here, several advanced features were incorporated in the basic model 

(see below). The resulting STDP rule that governed the modification of synaptic weights 

between two monosynaptically connected neurons is shown in Figure 2.5. 

 (1) Basic model:  

 The basic STDP rule describes how a synaptic weight is modified by the timing 

between pre- and postsynaptic APs. In modeling studies, the basic rule is described as 

(Song et al., 2000): 
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dw: the normalized change of the synaptic weight (= dW/W) 

A+ / A-: the maximum amounts of synaptic modification, which occur when ∆t is  

close to zero (both> 0) 

∆t:  pre-to-postsynaptic inter-spike intervals 

τ+ / τ-: time constants of exponential decay of positive/negative learning window  

 

 Intuitively, presynaptic APs that follow postsynaptic APs (∆t < 0) produce long-

term weakening of synapses (dw < 0), and APs arriving at the synapse with reverse order 

(∆t > 0) produce the opposite effect (dw > 0). The largest changes in synaptic efficacy 

(A+ or A-) occur when the time difference between pre- and postsynaptic APs is small, 

and there is a sharp transition from strengthening to weakening as this time difference 

passes through zero. The effects of weakening and strengthening decrease as the time 

difference increases by time constants τ- and τ+, respectively (see Figure 2.5). 
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(2) Saturation model:  

 In order to prevent synaptic weights increasing or decreasing to unrealistic values, 

an upper bound and a lower bound were set. The updating functions (the first term on the 

right-hand side of Equation 2.4) were added to attenuate synaptic changes as a synapse 

approaches the upper or lower boundary of the allowed range. 
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   [Equation 2.4] 

 

Wmax / Wmin: the maximal/minimal weight of the synapse 

µ+ / µ-: the extended multiplicative positive/negative update (Gutig et al., 2003)  

 

 If µ+ and µ- equal 1, then the updating functions linearly attenuate positive and 

negative synaptic weights when approaching Wmax and Wmin, respectively; otherwise, 

faster or slower nonlinear attenuation occurs. This prevents synaptic efficacies from 

becoming unnaturally excitatory or inhibitory and removing the problems caused by 

artificially clipping synaptic weights at their maxima. 

(3) Suppression model:  

 The context of spike trains also affects how STDP operates. In visual cortical 

slices, the contribution of each pre- or postsynaptic spike pair to synaptic modification 

depends not only on the interval between the pair, but also on the timing of preceding 

spikes (Froemke and Dan, 2002). That is, activity-induced synaptic modification depends 

not only on the relative spike timing between the neurons, but also on the spiking pattern 

within each neuron. The firing history of each neuron influences the efficacy (epre / epost) 

of subsequent APs, and further affects the role of each AP plays in STDP. This 

phenomenon is modeled as follow: 
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epre / epost: the efficacy of the presynaptic/postsynaptic AP 

∆tpre / ∆tpost: the time intervals between APs for calculating STDP and their 

previous APs in presynaptic/postsynaptic neurons 

τpre / τpost: the suppression time constant for presynaptic/postsynaptic neurons 

(Froemke and Dan, 2002) 

 

 The synaptic change (dw) is “suppressed” by the efficacy of corresponding  pre- 

and postsynaptic APs, which depends only on the interval from the preceding AP in the 

same neuron. 

(4) Overall modified model: 

 Combining the standard STDP model with saturation constraints and the AP 

efficacy, the STDP synapse model was modified and governed by the following 

equations: 
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The relation between dW/W (= dw) and ∆t is shown in Figure 2.5. 

 

 

Figure 2.5. STDP synapse between two LIF neurons: By varying the time interval (∆t) between 
spike inputs at two synaptically-connected neurons A and B, the normalized change in the synaptic weight 

of A to B followed the STDP rule. A+ and A- represent the maximum amounts of synaptic potentiation and 

depression, respectively. 

 

2.2.2.3 Axon model 

 The axons in the simulated network connected neurons located at different 

locations, conducted APs traveling in the network with different propagation delays 

depending on the distance between neurons. For each axon, APs only travel one way. 

Two-way communications were allowed between two neurons using two separate axons, 

but no multiple axons connected one neuron to another in the same direction. 

2.2.2.3.1 Conduction velocity 

 The conduction delay was proportional to the distance between two connected 

neurons, and the conduction velocity was set to be 0.3 m/s (Kawaguchi and Fukunishi, 

1998). 

2.2.2.3.2 Connectivity  

 The distribution of the connection distances followed the distribution found by 

Segev and Ben-Jacob (Segev and Ben-Jacob, 2000): neurons tend to make many short 
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connections but a few long ones as well (Figure 2.6). The number of connections per 

neuron followed a Gaussian distribution and each neuron had 50 ± 15 synapses onto other 

neurons. 

 

 

Figure 2.6. Distribution of synaptic connection lengths: Neurons connected by axons tended to 
make many short connections but a few long ones as well. The longest connection was close to 4.24 mm, 

which is the length of the diagonal of the 3 mm by 3 mm area where the neurons were located.  

 

2.2.2.4 Electrode model 

 An 8 by 8 grid of electrodes with 333 µm inter-electrode spacing was included. 

The inter-electrode spacing, which was larger than the inter-electrode spacing of 200 µm 

in MEAs, was selected so that the distance from each peripheral electrode to the edge of 

the network were also the inter-electrode spacing. This difference showed no significance 

in validity tests (Section 2.3). All electrodes could be used for stimulation, while 60 of 

these (except corner electrodes CR11, CR18, CR81 and CR88) were used for recording 

(Figure 2.1B). In real MEAs, electrode CR15 is the large ground electrode and is not used 

for recording/stimulation (not shown in Figure 2.1A). In the simulated network, each 

electrode recorded 5 ± 1 of the closest neurons, and stimulated 76 ± 12 of the closest 
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neurons. These parameters were tweaked and optimized in various validation 

experiments (described in Section 2.3), since little experimental evidence exists for the 

number of neurons recorded or the range that one stimulus electrode could affect in 

cultured living networks.  

2.2.2.5 Simulation setup 

 All excitatory synaptic weights were initially set to 0.05 and could vary between 

zero and 0.1 due to STDP. At the maximal weight, each spike would have a 50% 

probability of evoking a spike in the postsynaptic neuron, due to its summation with 

intrinsic noise (Figure 2.7). The synaptic weights for the inhibitory connections were 

fixed at -0.05. The networks were run for 2 hours in simulated time until the synaptic 

weights reached the steady state, which took 3 to 4 hours in compute time (MATLAB 7.0, 

AMD Athlon processor, 2.08 GHz, 512 MB RAM). Most of the excitatory synaptic 

weights (93 ± 2%) were less than 0.01 or greater than 0.09 (Figure 2.8). This bimodal 

steady-state distribution of weights arose from the STDP rule, as previously observed by 

Song et al. (2000), and Izhikevich and Desai (2003). The set of synaptic weights after 2 

hours, which stabilized without external stimuli, was used for the subsequent simulation 

experiments as the initial state.  
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Figure 2.7. Relation between the synaptic weight and the firing probability of the 

postsynaptic neuron: By varying the synaptic weight between two neurons, the probability of triggering 
an AP in the postsynaptic neuron was measured. At the maximal weight (0.1), each presynaptic spike 

would have a 50% probability of evoking a spike in the postsynaptic neuron, due to fluctuations in the 

postsynaptic neuron’s membrane potential. 
 

 

Figure 2.8. Bimodal distribution of network synaptic weights in equilibrium: The network 

synaptic weights of excitatory synapses reached equilibrium with a bimodal distribution after 2 hours in 

simulation time. Most of the excitatory synaptic weights (93 ± 2%) were less than 0.01 or greater than 0.09.  

 

2.3 Validation 

 In order to show that the simulated networks exhibit similar properties observed 

in living cultures of rat cortical neurons, the results from the following validity tests in 

simulated networks were compared to the experimental data collected in MEA cultures 

prepared as in Appendix C. In several cases, simulated networks even predicted and 

helped determine the experimental parameters. 



www.manaraa.com

 31 

2.3.1 Spontaneous activity  

 The most dominant pattern of spontaneous activity in MEA cultures is global 

dish-wide bursting (Gross et al., 1993a; Wong et al., 1993; Kamioka et al., 1996; Gross 

and Kowalski, 1999). The artificial networks are able to produce the similar synchronized 

activity pattern (Figure 2.9). 

 

 

Figure 2.9. Comparison of the network spontaneous activities: Simulated spontaneous activity 
resembles the experimentally recorded data. One minute of spontaneous activity was recorded from a living 

network by a 60-electrode MEA (Left), and in simulation (Right) for comparison. The upper panels are 

spike raster plots. The lower panels are firing rate histograms, with bin sizes of 100 msec.  
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2.3.2 Stimulus-evoked responses  

 Evoked responses are observed when electrical stimuli are delivered into MEA 

cultures. By repeating the same stimulus, the evoked responses with a specific delay 

pattern were usually observed, called direct electrically-evoked action potentials (dAPs, 

see more in Appendix E) shown in Figure 2.10. 

 

 

Figure 2.10. Comparison of the network evoked responses: Simulated evoked responses resemble 
the experimentally recorded data. Fifty trials of evoked responses recorded by one electrode in a living 

network (Left), and in simulation (Right) are shown for comparison. The upper panels are spike raster 

plots. The lower panels are firing rate histograms, with the bin size of 0.1 msec. The timings of stimuli for 

each trial are aligned at time zero. For the living network, the activity 2 msec immediately after the 

stimulation was removed by a stimulus artifact suppression algorithm (Wagenaar and Potter, 2002).   
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2.3.3 Frequency-dependent property 

 By delivering paired stimulus pulses at two different electrodes in an MEA 

culture, the network response to the second stimulus pulse was inhibited when the inter-

pulse interval (IPI) was around 100 msec (Shkolnik, 2003). The relation between IPI and 

network responses (Figure 2.11A) suggests a network-level refractory period, which is 

also found in the simulated networks implemented with frequency-dependent synapses 

(Figure 2.11B). 

 

 

Figure 2.11. Comparison of the network responses to different IPIs: The IPI curve from 
simulation resembles the experimental results. The normalized network responses to the second stimulus 

pulse were plotted versus the range of IPIs. The IPI curve obtained from a living network (Left) is 

compared to the one from simulation (Right). 
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 The study was expanded from one IPI between two stimulus pulses into two IPIs 

between three stimulus pulses. By measuring the network response to the third stimulus 

pulse, the results of this 3-electrode IPI experiment are shown in Figure 2.12A. The 

simulated networks were able to predict the results and help determine the experimental 

parameters (Figure 2.12B). 

 

 

Figure 2.12. Prediction and comparison of the network responses to different IPIs in 3-

channel experiment: The results of 3-electrodel IPI experiment from simulation resemble the 
experimental results (obtained by Bakkum). The normalized network responses to the third stimulus pulse 

were plotted (color coded) versus the IPI between the first and the second pulses (x-axis) and the IPI 

between the first and the third pulses (y-axis). The result from simulation (Left) is compared to the one 

from a living network (Right). 
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2.3.4 Spontaneous bursts quieting  

 The number of spontaneous bursts were suppressed by sequentially stimulating 

multiple locations in MEA cultures (Wagenaar et al., 2005) (see more in Appendix F). 

The ability of multi-site stimulation to “quiet” the spontaneous bursts in living neuronal 

networks was also found in simulated networks (Figure 2.13). 

 

 

Figure 2.13. Comparison of the effect of spontaneous bursts quieting: The quieting of 
spontaneous bursts by multi-site stimulation was similar in experimental data (carried out by Wagenaar) 

(Left) and simulation (Right). The measure of the mean firing rate over median firing rate (y-axis) is 

calculated in1-minute sliding window, is plotted vs. time (x-axis) during spontaneous activity and multi-site 

stimulation (indicated by gray bars). The multi-site stimulation was applied on 8 electrodes at an aggregate 

rate of 8Hz. 
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2.3.5 Superbursts 

 Population-wide bursts in MEA cultures were found spontaneously clustered into 

sequences of 5 to 12 members with a highly stereotyped spatiotemporal pattern that 

lasted up to 30 seconds (Wagenaar et al., 2006b). These bursts of bursts, termed 

“superbursts” (Figure 2.14A), were found in a minority of cultures. In the simulated 

networks, a superburst-like activity structure was found by increasing the density of 

connectivity from 50 synapses per neuron to 100 synapses per neuron (~ 10,000 synapses 

in a network) (Figure 2.14.B). 

 

 

Figure 2.14. Comparison of the structure of superbursts: The temporal structure of superbursts 
was similar in experimental data (carried out by Wagenaar) (Left) and simulation (Right). The top panels 

are firing rate histograms of a 10-min data. The middle panels are firing rate histograms of a superburst, 

whose spike raster plots are shown in the bottom panels. 

 

2.4 Discussion 

 Without detailed dynamics exhibited in some other more complex neuron models, 

such as Hodgkin-Huxley neuron model (Hodgkin and Huxley, 1990) and Izhikevich 

neuron model (Izhikevich, 2004), 1,000 LIF neurons demonstrated an impressive fidelity 

to living MEA cultures in various comparisons. Since little is known about how the 

STDP rule scales to the network level, the STDP algorithm in the simulated network 

could only be examined between two synaptically-connected neurons (Figure 2.5). By 
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delivering plasticity-inducing stimulation, such as a tetanus (Bliss and Lømo, 1973), 

changes in the network spontaneous activity pattern observed in the simulated network 

were similar to those in living cultures (Figure E.1). This indirectly validates the long-

term plasticity mechanism implemented in the simulated networks. For the short-term 

plasticity mechanism, frequency-dependent depression provided the network-level 

refractoriness found in living cultures (Figures 2.10 and 2.11). Without the frequency-

dependent dynamics, spontaneous bursts exhibited an abnormally long duration, or even 

without termination. 

 This biologically-inspired simulated network successfully predicted several 

complex properties that were further validated in MEA cultures (Chapters 3 to 6), which 

shows its usefulness for studying network dynamics that are difficult to access and 

control in living networks. 
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CHAPTER 3 

ACTIVITY STATISTIC TO DETECT 
ETWORK PLASTICITY: 

CE
TER OF ACTIVITY TRAJECTORY (CAT)
ix
 

 

 Electrically-interfaced cortical networks cultured in vitro can be used as a model for studying the 

network mechanisms of learning and memory. Lasting changes in functional connectivity have been 

difficult to detect with extracellular multi-electrode arrays (MEAs) using a standard firing rate statistic. We 

used both simulated and living networks to compare the ability of various statistics to quantify functional 

plasticity at the network level. Using the simulated leaky integrate-and-fire (LIF) neural network (described 

in Chapter 2), we compared 5 established statistical methods to one of our own design, called center of 

activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of 

spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the 

most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By 

reducing the dimensionality of multi-unit data while still including spatial information, CAT allows 

efficient computation of spatiotemporal activity patterns which is useful for real-time closed-loop systems. 

Thus, CAT is a excellent candidate for decoding network activity for demonstrating learning behavior in 

embodied cultured networks, and will be useful for studies in vivo or in vitro in which the locations of 

recording sites on multi-electrode probes are important.  

3.1 Introduction 

 Modification of connectivity between cortical neurons plays an important role in 

the processes of learning (Ahissar et al., 1992; Buonomano, 1998) and memory 

(Merzenich and Sameshima, 1993 ). Connectivity at the synaptic level has been studied 

by administering stimuli while simultaneously recording neural activity, and then 

quantifying plasticity by analyzing the stimulus-response relationships. Culturing on 

multi-electrode arrays (MEAs) was introduced to help understand connectivity and 

plasticity in networks of neurons (Gross, 1979; Pine, 1980). This allows long term 

(months), non-invasive observation of the electrical activity of multiple neurons 

simultaneously (Potter and DeMarse, 2001) in a system with less experimental 

                                                 

 

 
ix
 Adapted from: Zenas C. Chao, Douglas J. Bakkum, and Steve M. Potter (2007): Region-specific network 

plasticity in simulated and living cortical networks: comparison of the Center of Activity Trajectory (CAT) 

with other metrics. J. Neural Eng. 4, 294-308. 
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complexity and greater control than preparations in vivo. External factors such as sensory 

inputs, attention, and behavioral drives are absent, while many aspects of complex 

spatiotemporal spike patterns observed in animals remain (Gross and Kowalski, 1999; 

Shefi et al., 2002). 

 Many activity statistics have been used to quantify stimulus-response 

relationships from simultaneous recordings of multiple neurons (Brown et al., 2004). 

Most analyze the dependencies between spike trains, such as the maximum likelihood 

method (Chornoboy et al., 1988; Okatan et al., 2005), product-moment correlation 

coefficient (Kudrimoti et al., 1999), and functional holography (Baruchi and Ben-Jacob, 

2004), etc. However, only a few were applied for measuring network plasticity. The most 

common of these was firing rate (FR), which showed plastic modifications of network 

response induced by tetanic stimulation in cortical cultures (Reich et al., 1997; Jimbo et 

al., 1998b; Maeda et al., 1998b; Jimbo et al., 1999; Wagenaar et al., 2006a), and 

dopamine-regulated plasticity in anaesthetized rats (Rosenkranz and Grace, 1999). Firing 

rate histogram (FRH) uses firing rates integrated over successive sequential latency 

epochs to add detailed temporal information, and was applied to demonstrate adaptable 

image processing and pattern recognition through the training of tetanic stimulation in 

MEA cultures (Ruaro et al., 2005). Mutual information (MI) characterized the statistical 

dependence between neuron pairs, exposing the strength of coupling between neurons 

and the functional connectivity among cortical areas (David et al., 2004). Cross-

correlation histograms (CCH) from pairs of neurons showed functional plasticity in the 

auditory cortex of behaving monkeys (Ahissar et al., 1998), and the more advanced shift-

predictor corrected cross-correlogram (SCCC) was used to quantify receptive field 

plasticity in the rat auditory cortex (Bao et al., 2003). Joint peri-stimulus time histogram 

(JPSTH) characterized the causality of firing between neuron pairs, and successfully 

demonstrated long-term facilitation of neural activity involved in respiratory control 

(Morris et al., 2003). Robust neuronal computation and encoding is believed to involve 
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the distribution of information over populations of neurons and synapses in a 

combination of spatial and temporal domains. Observing only pairs of neurons (MI, CCH, 

SCCC, and JPSTH), neglecting temporal information (FR), and neglecting spatial 

information (all) limit the ability of these to measure the complex plasticity of the brain.

 We recently devised a statistic called the center of activity trajectory (CAT), 

which incorporates both the physical locations of the recording sites and the timing of 

neural activity in order to depict dynamics of the population activity in the neuronal 

circuitry space (first described in Chao et al., 2005, upon which Chapter 4 is based). The 

neuronal circuitry space is defined by the physical locations of the neurons, in our case 

being the MEA’s 2-dimensional plane. The center of activity (CA) component is 

analogous to the center of mass, in that the mass at an electrode location is determined by 

the recorded firing rate. CAT is the sequence of CAs over successive time intervals. We 

discuss how the inclusion of spatial and temporal information improved the detection of 

neural network plasticity. The importance of the spatial location of neural activity has 

been widely emphasized in other studies. For example, spatiotemporal dipole models 

were used to represent the spatial distribution of underlying focal neural sources 

producing electroencephalographic (EEG) and magnetoencephalographic (MEG) signals 

(Scherg, 1990; Leahy et al., 1998).  

 We used the simulated network of Chapter 2 to compare CAT’s ability to detect 

network plasticity to the alternative statistics: FR, FRH, MI, SCCC, and JPSTH. No 

ground truth about network plasticity in living networks exists, because neuronal 

connectivity cannot be measured for more than a few pairs of neurons simultaneously. 

Therefore, we could only cross-validate the amount of plasticity detected by each statistic 

in a simulated network, in which the weights of all synapses were observable. In 

simulation, we modulated neural plasticity in a controlled manner, and quantified the 

ability of each statistic to reveal underlying changes in functional synaptic connectivity.   
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 In simulation, CAT showed the ability to detect smaller changes in the 

distribution of network synaptic weights than did FR, FRH, MI, SCCC or JPSTH. CAT 

also detected more pronounced changes in the network following tetanus than the 

alternate statistics in living MEA cortical cultures.  

 By applying a shuffling method to the CAT analysis to erase spatial information 

about recording location in its calculation, we found that changes in activity patterns 

recorded from neighboring electrodes were not independent and contributed to the better 

performance of CAT to detect plasticity. The network plasticity was region-specific: 

despite the apparent random connectivity of neurons, plasticity was not symmetrically 

distributed, and the location of neurons played a role in stimulus-induced plasticity. 

3.2 Methods 

3.2.1 Simulation 

3.2.1.1 Simulated network 

 For simulation experiments, we used five 1,000-LIF-neuron simulated networks, 

as described previously in Chapter 2, each with a different connectivity. 

3.2.1.2 Setup of networks with different synaptic states 

 Synaptic state of a network was determined by its connections and synaptic 

weight distribution. In order to generate different synaptic states, we used 5 simulated 

networks with different connectivity as reference networks. We ran the networks for 5 

hours in simulated time until the synaptic weights reached a steady state (see Section 

2.2.2.5). The set of synaptic weights stabilized after 5 hours of spontaneous activity, 

without external stimuli, and was used as the initial state for the corresponding reference 

network. 
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 For each reference network, we applied simulated tetanization at two randomly 

picked electrodes at 20 Hz, and a series of subsequent networks (snapshots of their 

different synaptic states) were collected after different tetanus durations (1, 2, 5, 10, 15, 

20, 30 sec, and 1, 2, 5 min). That is, starting from a reference network (S0), S1 was the 

network with the synaptic state at 1 sec after the start of tetanization, S2 at 2 sec, and so 

forth. Therefore, for each pair of randomly chosen tetanization electrodes, 10 new 

networks with different synaptic states were obtained. This process was repeated for each 

reference state using 10 different tetanization electrode pairs. By altering the 5 reference 

networks in this manner, a total of 500 new networks with different synaptic states was 

obtained. 

 Tetanic stimulation induces long-lasting changes in synaptic transmission (Bliss 

and Lømo, 1973), which shapes how neural circuits process information and is involved 

in behavioral modifications, including simple forms of learning in motor control (Fisher 

et al., 1997). Administration of 20 Hz tetanization, as in our study, was widely used to 

induce long-term facilitation (LTF) of postsynaptic potentials at crayfish neuromuscular 

junctions (Wojtowicz and Atwood, 1985; Delaney et al., 1989), short-term synaptic 

plasticity in anesthetized fish (Fortune and Rose, 2000), long-term potentiation (LTP) in 

hippocampal slices (Miles and Wong, 1987), and modification of synaptic strength in 

cortical cultures (Jimbo et al., 1999). In our simulated networks, tetanization induced 

both LTP and long-term depression (LTD) of synapses through STDP: firing of a 

postsynaptic neuron immediately after a presynaptic neuron results in LTP of synaptic 

transmission, and the reverse order of firing results in LTD (Desmond and Levy, 1983; 

Gerstner et al., 1996; Markram et al., 1997; Bi and Poo, 1998).  

3.2.1.3 Simulations with random probing sequence (RPS) 

 For each network, we ran ten simulations with different 10-min random probing 

sequences (RPSs). Therefore, a total of 5050 simulations were performed separately on 
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505 networks (500 new networks and 5 reference networks). The probe stimuli were 

applied to all 60 electrodes, one at a time, with inter-stimulus intervals on a given 

electrode drawn from independent exponential distributions with a mean of 60 seconds. 

Thus, each electrode stimulated the simulated network with different random sequences, 

averaging 1 pulse per second for the whole array.  

 In each simulation, there were 10.0 ± 3.1 (mean and standard deviation) stimuli 

delivered at each electrode. The same Gaussian noise, introduced into neurons as 

fluctuations in membrane voltage, was used for each simulation to control the effects of 

self-firing or of sub-threshold fluctuation of membrane potential on activity. In order to 

ensure the statistics calculated from the same network correspond to the same synaptic 

state, the STDP algorithm was turned off throughout the simulation to prevent ongoing 

activity from changing the network state.  

3.2.1.4 Plasticity statistics 

 Five commonly used statistics and the center of activity trajectory (CAT) were 

measured from each simulation (see Figure 3.6). The 5 commonly used statistics were 

firing rate (FR), firing rate histogram (FRH), mutual information (MI), shift-predictor 

corrected cross-correlogram (SCCC) and joint peri-stimulus time histogram (JPSTH). 

The details and sources of these statistics are given in Appendix B. 

3.2.1.5 Center of activity trajectory (CAT) 

 CAT represents spatiotemporal patterns of network-wide population activity. As 

applied here, it is a spatially-weighted measure of temporally binned responses to single-

electrode stimuli in neuronal circuitry space. During each simulation, stimuli at each 

electrode occurred multiple times (10.0 ± 3.1 times) in one RPS. FRH from recording 

electrode Ek to the stimulus at electrode Pi, i

k

P

EFRH , was defined as the average number of 

spikes counted in a 5 msec moving time bin with 500 µsec time step over trials. 



www.manaraa.com

 44 

)(nFRH i

k

P

E  represents the value of i

k

P

EFRH in the nth bin, and Col(Ek) and Row(Ek) are the 

column number and the row number of electrode Ek, respectively. For example, the 

electrode in column number 2 and row number 8 is 28 (see Figure 2.1). The value of the 

center of activity (CA) in the nth bin for stimulation electrode Pi has X and Y 

components, which are defined as: 
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where Rcol and Rrow are the coordinates of a reference point (the physical center of the 8 

by 8 grid of electrodes, in our case). CA was calculated with electrode number in the 

neuronal circuitry space, which is equivalent to using the physical location since the 

inter-electrode spacing is constant. The corresponding X and Y components for CAT are 

defined as:  
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where @ is the total number of bins in i

k

P

EFRH . Intuitively, CA is analogous to the center 

of mass, where the “mass” at an electrode location is determined by the recorded firing 

rate. CAT is the sequence of CAs over successive time intervals.  

 CA reflects spatial asymmetry of neural activity about the reference point (the 

center of the dish), and CAT represents the dynamics of CA. That is, if the network is 
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firing symmetrically, the CA will be at the center of the dish, whereas if the network fires 

mainly in one corner then the CA will be found off-center toward that corner. CA reduces 

the dimensionality from 60 to 2, and it is not an injective (information-preserving) 

function of activity distribution.  

3.2.1.6 Evaluating the performances of different statistics 

 Performance of a statistic was defined by how small a change in network synaptic 

weights could be detected as significant. To evaluate performance, in each simulation, we 

evaluated the statistic for evoked responses to all 60 stimulation electrodes and joined 

together into a large vector representing the whole stimulus-response information (input-

output function) of the network. We called this joint vector the whole-input-output (WIO) 

vector of the statistic. Figure 3.1 demonstrates the calculation of the WIO vector for CAT. 

A visualization of the change in WIO vectors for CAT from S0 to S1- S10 appears in 

Figure 3.2.  
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Figure 3.1. Whole-input-output (WIO) vectors for analyzing performances of different 

statistics: WIO vectors calculated from each statistic were used to represent network input-output function. 

As an example, the WIO vector of CAT calculated from probe responses to one RPS at one network state is 

demonstrated. A. An RPS, RPSk, was delivered into a network with synaptic state Si. B. CA was calculated 

for evoked responses to stimulation electrode Pj (j= 1 to 60). Each frame indicates the firing rate over a 5 

msec moving time window (with 500 µsec time step) on an 8 by 8 grid of electrodes averaged over 

multiple stimuli at Pj (RPSk might have multiple stimuli delivered at Pj, see A). The 2-D trajectory of CAs 

from Frame 1 to Frame N (from 0 to 100 msec after the stimuli), CAT, can be represented by a 1-D vector 

by joining CATX and CATY. This vector represents CAT of responses to stimuli Pj at network state Si. C. 

CATs for responses to 60 different stimulation electrodes (P1 to P60) were jointed together to form the WIO 

vector. This WIO vector represents the input-output function, in terms of CAT, of network state Si. For 

each statistic, each synaptic state has one corresponding WIO vector to describe its input-output function. 

The statistic that is sensitive to changes in network synaptic states should be able to show significantly 

different WIO vectors from different synaptic states. One WIO vector was constructed for each RPS (RPSk, 

k= 1 to10) in each network state (Si, i= 0 to 10). Therefore, for each statistic, 5050 WIO vectors were 

obtained (= (500+5)*10. 505: 500 new networks + 5 reference networks; 10: number of RPSs delivered on 
each network). 
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Figure 3.2. Multi-dimensional WIO vectors measured in different synaptic states in 

simulated networks: The WIO vectors measured from different synaptic states were different. This is a 

cross viewing 3-D stereogram of an example of the WIO vectors for CATs from the simulations at S0 to S10 

(generated by the same tetanization electrodes). Principal components analysis (PCA) was applied on the 

WIO vectors to visualize the data. Each symbol represents the first 3 principal components (PC1- PC3) of 

the WIO vector of a CAT from one simulation. Each synaptic state Si has 10 corresponding symbols, which 

represent the results from 10 different simulations (with different RPSs). The distance of each symbol from 

the centroid of S0 (shown as a cross) indicates amount of change in CATs between the corresponding 

synaptic state and the reference state. CATs obtained from the synaptic states generated by longer 

tetanizations were further from CATs obtained from S0 than those from shorter tetanizations, indicating 

longer tetani cause greater plasticity. 

 

 We measured the Euclidian distances E(Si) between 10 WIO vectors (from 10 

simulations with different RPSs) calculated at Si to the centroid calculated at S0 (shown as 

a cross in Figure 3.2). We then compared E(Si) for S1- S10 to E(S0) separately, and the p-

values (n= 10 RPSs, Wilcoxon signed rank test, which tests the magnitudes of the 

differences between paired observations without assumptions about the form of the 

distribution of the measurements) were computed to quantify the significance of 

differences. For each state, the relation between the mean p-values (n= 50, from 5 

reference networks and 10 tetanization electrode pairs per reference network) and the 

mean absolute synaptic change (MASC) was quantified: 
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where @ is the number of excitatory synapses and Wk(Si) represents the synaptic weight 

of the kth excitatory synapse at network Si. We normalized the absolute change in each 

synapse by the possible range, 0 to 0.5, for excitatory synapses. We determined the 

performance of different statistics as the minimum MASC for p-values below a 

significance threshold of 0.05; this is termed “detectable MASC”. The smaller the MASC 

a statistic can detect, the better the statistic’s performance. 

 Successful performance can be artificially enhanced if a statistic mistakes some 

non-significant changes as being significant. Therefore, analyzing sensitivity (ability to 

detect significant plasticity) and specificity (ability to discount insignificant plasticity) 

can further determine the quality of a statistic. Sensitivity was defined as the probability 

that a statistic indicated significant difference when calculated from two significantly 

different network synaptic states (probability of a true positive). Specificity was defined 

as the probability that a statistic showed no significant difference when calculated from 

networks with no significant difference in synaptic state (probability of a true negative). 

Together, sensitivity and specificity described the accuracy of a statistic. 

 For each reference network, the 500 new states (S1 to S10) were individually 

evaluated to determine whether their synaptic weights distributions were significantly 

different than the distribution of the reference state (two-sample Kolmogorov-Smirnov 

test, which tests whether the two samples have the same distribution, two-tailed, α= 0.05). 

If a statistic showed a significant difference (p-value< 0.05; see previous section) for a 

state that was significantly different than the reference state (according to Kolmogorov-

Smirnov test), then the result was classified as being a true positive (TP). Conversely, if it 

showed no significance, then the result was considered a false negative (F@). If a statistic 

showed significance when calculated from a state that was not significantly different than 

the reference state, then the result was considered a false positive (FP). If it showed no 

significance, then the result was considered a true negative (T@). The numbers of TP, F@, 
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FP, and T@ were counted for the 500 new networks, and the sensitivity and specificity 

were defined as: 
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3.2.2 Experiments in living cultures 

3.2.2.1 Culture and experimental protocol 

 Dense networks of dissociated cortical neurons (~ 7000 cells/mm
2
) were prepared 

and cultured as described by Potter and DeMarse (Potter and DeMarse, 2001). The details 

of cell culture protocol used in this work are described in Appendix C.  

 Six experiments were performed on 5 cultures from 4 dissociations. Culture ages 

ranged from 1 to 3 months (Potter and DeMarse, 2001). We delivered biphasic stimuli 

(monopolar) at 500 mV and 400 us per phase by using our custom-made stimulator 

(Wagenaar et al., 2004; Wagenaar and Potter, 2004). Data acquisition, visualization, 

artifact suppression (Wagenaar and Potter, 2002), and spike detection were performed 

using Multichannel Systems hardware and our publicly available acquisition and analysis 

software, Meabench (Potter et al., 2006). Experiments were conducted in an incubator to 

control environmental conditions. 

 Each experiment consisted of a 2-hr period of RPS followed by a 15 minute 

tetanic stimulation followed by another 2 hour period of RPS (Wagenaar et al., 2006a). In 

six experiments, the RPS periods consisted of 6 electrodes stimulated in random order at 

an aggregate frequency of 0.5 Hz (In one experiment, the RPS periods consisted of only 4 

probe electrodes). Prior to an experiment, every electrode was stimulated in random order 
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20 times, and electrodes with the 6 (or 4) highest responses (the total number of spikes 

counted within 100 msec latency after stimuli over recording electrodes) were selected as 

probe electrodes. The tetanus electrodes were randomly chosen from these. Fewer 

electrodes were used in RPS for living networks than simulated networks because not 

every electrode was able to evoke responses. Two of these electrodes were used for the 

tetanic stimulation: 150 trains of 20 paired pulse stimuli with 10 msec intervals between 

paired pulses, 50 msec intervals between pairs, and 6 s intervals between the start of each 

train.  

3.2.2.2 Measures of CAT, FR, FRH and SCCC 

 We used evoked responses within 100 msec after the stimuli of RPS for statistics 

calculations (see Appendix B).We measured CAT from the evoked responses in the 

cultured networks and compared these to the three most commonly used statistics: FR, 

FRH and SCCC. MI was not measured, due to its poor performance in detecting network 

plasticity in simulations (see Section 3.3.1). JPSTH was not measured because of its high 

dimensionality and computation time (see Figure 3.6 and Appendix B).  

3.2.2.3 Statistics 

 For each statistic, we calculated one WIO vector every 240 seconds (a “block”) 

for the experiments with 6 probe stimulation electrodes, and every 160 seconds for the 

experiments with 4 probe stimulation electrodes. Thus, there were 19.9 ± 4.2 (mean and 

standard deviation) stimuli delivered at each electrode for each WIO vector. Three 

periods were used for statistics: Pre1, Pre2 and Post1 (see Figure 3.8A). Each period had 

a duration of 52.5 minutes, and the intervals between Pre1 and Pre2 and between Pre2 

and Post1 were 15 minutes. The 15-min interval between Pre2 and Post1 was the 

tetanization. For each statistic, the mean distance of the WIO vectors in Pre1 to the 

centroid of the WIO vectors in Pre2 (C) was compared to the mean distance to their own 



www.manaraa.com

 51 

centroid (D). The ratio of change to drift, C/D, was used to quantify the change from 

Pre1 to Pre2 before the tetanus (no change if this ratio ~ 1). A similar measure between 

Pre2 and Post1 was used to quantify the change across the tetanus. The performance of 

each statistic to detect the tetanus-induced change was quantified by comparing the two 

C/Ds (n= 6 experiments, Wilcoxon signed rank test). 

3.3 Results 

 We tested the performances of six network plasticity statistics in simulated 

networks: FR, FRH, MI, SCCC, JPSTH and CAT (all acronyms are shown on pages xvii- 

xix). We then applied the statistic with the highest performance for detecting changes in 

simulated network synaptic weights to living cultures on MEAs to detect tetanus-induced 

functional plasticity. 

3.3.1 
etwork simulation: CAT showed the highest performance and sensitivity for 

detecting changes in network synaptic state 

 In simulation, the synaptic connectivity can be easily controlled and monitored, 

and the way(s) changes in synaptic connectivity affect a statistic’s value can be directly 

studied. Various statistics were used to study functional connectivity in simulated 

networks under different synaptic states. The performance of different activity statistics 

to small differences in network synaptic connectivity was evaluated by measuring the 

statistical significance of the change in each statistic under different network synaptic 

states, altered gradually by simulated tetanic stimulation with spike-timing dependent 

plasticity (STDP).  

 Our 1,000-neuron LIF model and the living networks expressed similar 

spontaneous and evoked activity patterns, demonstrating the ability of the LIF model to 

represent the activity of biological networks. Raster plots and firing rate histograms of 

spontaneous activity and evoked responses obtained from both MEA cultures and 
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simulated networks are shown together for comparison, and demonstrate a remarkable 

similarity of activity patterns (Figure 3.3) (see other comparisons between the simulated 

network and the living MEA cultures in Section 2.3). For example, the rates of bursts (the 

ongoing synchronized barrages of action potentials) were 0.70 Hz and 0.73 Hz, and the 

proportions of spikes in bursts were 76% and 71%, in spontaneous activity of living and 

simulated networks respectively. 

 

 

Figure 3.3. Comparison of the network activities from a MEA culture and a simulated 

network: Simulated spontaneous activity and evoked responses resemble the experimentally recorded 
data. First row: One minute of spontaneous activity was recorded from a living network by a 60-channel 

MEA and in simulation for comparison. The upper panels are spike raster plots. The lower panels are firing 

rate histograms, with bin sizes of 100 msec. Second row: Fifty trials of evoked responses recorded by one 

electrode in a living network and in simulation are shown for comparison. The upper panels are spike raster 

plots. The lower panels are firing rate histograms with a bin size of 0.1 msec. The timings of stimuli for 

each trial were aligned at time zero. In the simulation, each electrode recorded the activities occurring 

within 100 µm. (same data as for Figures 2.8 and 2.9) 
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 A set of simulated networks with different synaptic states was created after 

tetanizations by using different electrode pairs and durations. In order to verify that 

different tetanization electrode pairs with different durations changed the synaptic weight 

distribution in the simulated networks, the centers of weights (CWs, see details in Section 

4.2.2.5 and Equations 4.1 and 4.2) (Chao et al., 2005) that were found for network states 

(S0 to S10) were calculated and are shown in Figure 3.4A. 

 

 

Figure 3.4. Setup of different synaptic states in simulation: A series of networks with different 
synaptic states were obtained by tetanization at different electrode pairs and with different durations from 

the reference network. From each reference network S0, 10 tetani at different electrode pairs were delivered. 

For each tetanization electrode pair, 10 synaptic states were obtained after different durations. A. Different 

tetanization electrode pairs caused different changes in synaptic weight distribution. The center of weights 

(CW) was used to visualize how the symmetry of the network synaptic weight distribution changed over 

time. Each curve represents CWs corresponding to a tetanization electrode pair (the column-row numbers 

of the electrodes are shown at the end of each curve). Synaptic states (S1 to S10) “collected” at different 

tetanization durations and the corresponding reference state S0 are shown as dots. B. The relation between 

mean absolute synaptic change (MASC) and the duration of tetanization (note log scale) from 5 reference 

networks. The means and the standard deviations of MASCs are shown (n= 50 networks: from 5 reference 

networks, each with 10 different tetani). 

 

 CW represents the spatial asymmetry of the network synaptic weights distribution. 

The CW changed differently for different initial network synaptic weight distributions, 

for different tetanization electrode pairs, and for different tetanization durations. 

Therefore, the various networks provide a basis to test the ability of various activity 
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statistics to discriminate between synaptic states. The mean absolute synaptic change 

(MASC) of all different states (S1 to S10) relative to the initial S0 is shown in Figure 3.4B. 

For each tetanization duration, the mean and standard deviation of MASC were 

calculated (n= 50 networks, from 5 reference networks and 10 tetanization electrode pairs 

per reference network). Even with significantly different CWs, the MASCs from different 

networks “collected” at the same tetanization duration were similar in magnitude 

(standard deviation< 1%, n= 50), suggesting the magnitude of plasticity was dependent 

mainly on tetanus duration, as opposed to network structure. 

 Simulations with random probing sequences (RPSs) were performed on simulated 

networks with different synaptic weights distributions. The various activity statistics of 

evoked responses to the RPS were calculated from each simulation. An activity statistic 

with good discrimination of underlying synaptic states should show different results in 

different networks, even with only small differences in distribution of synaptic weights. 

 CAT demonstrated the highest performance in detecting changes in state among 

the 6 statistics. The performances of the statistics are shown in Figure 3.5. For each state 

Si, the Euclidian distances E(Si) between each whole-input-output (WIO) vector of the 

statistic from Si to the centroid of the WIO vectors from the corresponding S0 were 

measured. Ten E(Si), measured from 10 RPSs in the same network with the same 

tetanization electrode pair, were compared to 10 corresponding E(S0), and the p-value 

was calculated (n= 10 RPSs, Wilcoxon signed rank test). For each state Si, 50 p-values 

and 50 MASCs were collected from 50 networks (5 reference networks with 10 different 

tetanization electrode pairs per reference network). The mean and standard deviation of 

the p-values were plotted versus the corresponding MASC averaged across the networks 

(n= 50 networks). The detectable MASCs for CAT, JPSTH, SCCC, FRH, MI and FR 

were 4.68, 6.65, 6.75, 9.3, 11.7 and 15.7% respectively. CAT detected the smallest 

MASC and is therefore the best statistic. 
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Figure 3.5. Evaluating the performances of different statistics: CAT showed the highest 
performance to detect changes in synaptic state among 6 statistics. The performance of different statistics to 

detect changes in synaptic state was evaluated by finding the “detectable MASC” at the point the p-values 

reach a threshold of 0.05 (shown as red arrows). For each state Si, 50 p-values and 50 MASCs were 

collected from 50 networks (5 reference networks with 10 different tetanization electrode pairs per 

reference network, see Results). The mean and standard deviation of the p-values (n= 50 networks) were 

plotted versus the corresponding MASC averaged across the networks (n= 50 networks). The mean and 

standard deviation of MASCs (n= 50 networks) are shown on the top of the figure (with vertical offsets for 

clarity). The performance of the statistic to detect the difference in MASC shown in descending order is: 

CAT, JPSTH, SCCC, FRH, MI and FR. 

 

 The relative performance (the smaller the detectable MASC, the higher the 

performance), average compute time, and dimensionality are shown in Figure 3.6. The 

performance of the statistic shown in descending order is: CAT, JPSTH, SCCC, FRH, MI 

and FR. The dimensionality of each statistic from one stimulation electrode is described 

in Appendix B. The average compute times for CAT, FR, FRH, MI, SCCC and JPSTH 

were 31.8 sec, 1.2 sec, 30.6 sec, 3.9 min, 26.4 min and 70.4 min per simulation 

respectively (MATLAB 7.0, AMD Athlon processor, 2.08 GHz, 512 MB RAM). Among 

all 6 statistics, only FR and FRH had shorter compute time than CAT, and only FR had 

smaller dimensionality than CAT. However, CAT showed significantly higher 

performance than FR and FRH.  
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Figure 3.6. Comparison of the 6 different statistics: CAT was the most sensitive activity statistic 
and was highly efficient. Examples of 6 statistics calculated from the same RPS during 3 synaptic states are 

shown: S0 (reference network), S7 (network with ~ 50% of the maximal MASC, see Figure 3.4B) and S10 

(network with the maximal MASC). All statistics were obtained from the same randomly chosen 

stimulation electrode. CAT: CATs are plotted as CATX vs. CATY from blue to red. FR: Number of spikes 

per msec at each recording electrode is displayed according to the corresponding location in the 8 by 8 

grids. FRH: FRHs, in the unit of number of spikes per msec, from a randomly chosen recording electrode 

are plotted. MI: MIs above 0.75 bits are plotted as colored lines between the corresponding electrode pairs. 

SCCC: SCCCs above zero from a randomly chosen pair of recording electrodes are plotted. JPSTH: 

JPSTH from the same randomly chosen pair of recording electrodes are shown. The performance 

(quantified by detectable MASC), compute time, and dimensionality, normalized by the values for CAT, 

are shown on the right. The axes for detectable MASC, compute time, and dimensionality are shown on the 

bottom in red, green, and blue respectively (the latter two are with logarithmic scales). Among all 6 

statistics, only FR and FRH had shorter compute time than CAT, and only FR had smaller dimensionality 

than CAT. However, CAT had significantly smaller detectable MASC than FR and FRH. CAT showed 

significantly higher performance to detect the difference in network synaptic state than other statistics. 
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 Table 3.1 shows the occurrences of true positives, false negatives, false positives, 

true negatives, and the sensitivity and specificity (see Section 3.2) of each statistic. CAT 

showed a sensitivity of 88.7%, the highest among all, with a specificity of 82.4%, 

comparable to JPSTH and SCCC. FRH, MI, and FR showed high specificity, which was 

an artifact of their low sensitivities. Sixty-eight out of the 500 new network states were 

found to not have significantly different distributions of network synaptic weights as 

compared to their original reference states (two-sample Kolmogorov-Smirnov test, two-

tailed, α= 0.05). 

 

Table 3.1. Sensitivity vs. specificity in simulated networks 

Statistic CAT JPSTH SCCC FRH MI FR CAT-ELS 

(10 shuffles) 

True positive (%) 77.6 70.4 68.0 47.4 44.0 27.2 30.6 

False negative (%) 8.8 16.0 18.4 39.0 42.4 59.2 55.8 

True negative (%) 11.2 11.0 11.2 12.2 13.6 13.6 12.6 

False positive (%) 2.4 2.6 2.4 1.4 0 0 1.0 

Sensitivity (%) 88.7 83.8 78.7 54.9 50.9 31.5 35.4 

Specificity (%) 82.4 81.2 82.4 90.6 100 100 92.9 

 

 By evaluating the performance, sensitivity, specificity, and compute time, CAT 

was found to be most sensitive and highly efficient at detecting synaptic changes in 

simulated networks. 

 The alternative statistics are often used in spike-sorted data. Spike sorting is used 

to distinguish the spike trains of individual neurons (Ahissar et al., 1998; Jimbo et al., 

1998a; Jimbo et al., 1999; Celikel et al., 2004), and can aid studies of neural populations 

(Lewicki, 1998), especially for neural computations that use spike timing. In simulated 

networks, activity of individual neurons can be directly observed. The analysis in Figure 

3.5 was repeated using sorted neurons to investigate if the performance of the alternative 

statistics would improve. In the 5 reference simulated networks constructed, 4.1 ± 1.8 
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neurons were recorded per electrode, and the six statistics were re-calculated based on 

about 250 neurons instead of 60 electrodes. CAT remained unchanged as the sorted 

spikes were spatially summed as before (see Equation 3.1 in Section 3.2). Despite 

improved performance and sensitivity of the other 5 statistics, CAT still detected the most 

plasticity. JPSTH, SCCC, FRH, MI and FR improved 11.1, 17.6, 11.0, 35.0, and 31.2% 

in performance, respectively (Figure 3.7), and improved 1.9, 5.2, 9.7, 27.7, and 62.5% in 

sensitivity (see Table 3.2).  

 

 

Figure 3.7. The performances of the statistics improved after spike sorting: The same figure 
representation is used as in Figure 3.6 

 

 

Table 3.2. The sensitivities and specificities of the statistics after spike sorting 

Statistic CAT JPSTH SCCC FRH MI FR 

Sensitivity (%) 88.7 85.4 82.8 60.2 65.0 51.2 

Specificity (%) 82.4 77.9 77.9 85.3 95.6 100 
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3.3.2 Experiments in living cultures: CAT revealed tetanus-induced long-term 

plasticity significantly better than the other statistics 

 CAT was measured from the evoked responses to RPS in 6 experiments on living 

cultured cortical networks and compared to the three most commonly used statistics: FR, 

FRH and SCCC. For visualization purposes, principal components analysis (PCA) was 

applied to the series of multi-dimensional WIO vectors to capture the largest variances 

and graphically demonstrate trends in changes. The first two principal components were 

normalized by subtracting their means and then dividing their standard deviations. The 

normalized first principal component (PC1) was plotted versus the normalized second 

principal component (PC2). An example comparing CAT, FR, FRH and SCCC is shown 

in Figure 3.8A. The corresponding CATs before and after tetanization from every block 

(a 240-sec window, see Section 3.2) and the average CATs are shown in Figure 3.8B. 

CATs from all experiments are shown in Figure 3.9. 

 The change across the tetanus was significantly greater than the drift before the 

tetanus for CAT (p-value< 1e-4, Wilcoxon signed rank test), FRH (p-value< 0.01) and 

SCCC (p-value< 0.01), but not for FR (p-value= 0.013). The C/D was used to quantify 

the change before the tetanus and the change across the tetanus (if the change is small, 

C/D ~ 1). The statistics of C/D from 6 experiments are shown in Figure 3.8C.  

 We did not perform spike sorting for experiments in living cultures. Standard 

spike sorting methods sort neural signals based on variations in spike waveform. In 

MEAs, local field potentials and overlapping action potentials distort the waveform to an 

extreme degree, and the electrodes are too far apart to allow triangulating common signal 

sources. Spike sorting was attempted, but proved to be unreliable. 
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Figure 3.8. Comparison of the changes in CAT, FR, FRH and SCCC across tetanization in 

living MEA cultures: A. An example of comparison of CAT, FR, FRH and SCCC (from evoked 
responses to RPS in one experiment) before and after tetanization is shown. Principal components analysis 

(PCA) was applied on multi-dimensional WIO vectors for visualization purposes. The normalized principal 

component was obtained by removing its mean and then dividing through by its standard deviation. The 

normalized first principal component (PC1) was plotted versus the normalized second principal component 

(PC2). Each dot represents the statistic calculated from every block (a 240-sec window), and the color 

indicates the corresponding time (shown in the colorbar). The black dashed line represents the tetanus. The 

separation between Pre-tetanization cluster (bluish dots) and Post-tetanization cluster (reddish dots) 

indicates the change of the statistic across the tetanus. B. Different patterns of CATs were observed before 

and after tetanization. CATs from an example experiment were overlaid (black trajectories), and the 

average CATs were shown by series of circles (from blue to red across 100 msec probe response). C. The 

statistics of C/D from 6 experiments showed that the change across the tetanus was significantly greater 

than the drift before the tetanus for CAT (**, p-value< 1e-4, Wilcoxon signed rank test), FRH (*, p-

value<0.01) and SCCC (*, p-value<0.01), but not for FR (p-value= 0.013). The p-values indicate that CAT 

was more capable of detecting the change over the drift than FRH, SCCC and FR. 
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Figure 3.9. CATs in six experiments with MEA cultures: Different patterns of CATs were 
obtained before and after tetanization from 6 experiments in MEAs. CATs obtained before tetanization 

(Pre) and after tetanization (Post) for each probe electrode are shown. The column-row numbers of 

corresponding probe electrodes are shown in the 8 by 8 MEA grids shown in the middle. The tetanization 

electrodes are depicted by thick black circles. For each probe, CATs calculated for each “block” (see 

Section 3.2) are shown in black lines and overlaid. The averaged CATs are shown in colored circles (from 

blue to red). 
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Figure 3.9. (continued) CATs in six experiments with MEA cultures 
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3.3.3 Electrode shuffling demonstrates the importance of electrode locations shown 

by CAT 

 In order to get some idea of the degree of localization of function in cultured 

cortical networks, the performance of CAT statistic with electrode locations shuffled 

(CAT-ELS) was calculated (see Appendix B). In CAT-ELSs, the information about the 

physical locations of the recording electrodes was removed. In both simulations and 

experiments in living cultures, the electrode locations were shuffled 10 times, and 10 

different corresponding CAT-ELSs were generated. The performance of these CAT-ELSs 

was evaluated and compared to the original CAT. 

 CAT, unlike the other statistics, incorporates the physical locations of the 

recording electrodes. This is the primary difference between methods, and we attribute 

CAT’s superior performance in both living and simulated networks to this feature. For 

simulated networks, the comparison of the performance between CAT-ELS and original 

CAT is shown in Figure 3.10A. The detectable MASC (threshold p-value= 0.05) for 

Mean CAT-ELS was 10.8%, which was greater than CAT (4.68%). The decrease in 

performance (increase in detectable MASC) indicates that electrode locations 

significantly affect performance of CAT in simulated networks. Furthermore, the 

sensitivity of CAT-ELS was 35.4%, significantly smaller than CAT’s 88.7% (see Table 

3.1).  
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Figure 3.10. Comparison of CAT and CAT-ELS in simulated and living networks: A. A 
comparison of the performance of CAT and CAT-ELS in simulated networks (the representation is the 

same as Figure 6). Ten performance curves corresponding to different random shuffled electrode locations 

(CAT-ELS) and the mean of the ten curves (Mean CAT-ELS) are shown. The performance curve of FRH is 

also shown for comparison. The detectable MASC (threshold p-value= 0.05) for Mean CAT-ELS was 

10.8%, which was greater than CAT (4.68%). The decrease in performance (increase in detectable MASC) 

indicates the importance of physical electrode locations in the performance of CAT in simulated networks. 

B. An example comparison of CAT and CAT-ELS in a living MEA culture before and after tetanization 

(the data used and representation are the same as in Figure 3.8A). The difference between Pre-tetanization 

(bluish dots) and Post-tetanization cluster (reddish dots) was reduced by shuffling electrode locations in 

CAT-ELS. C. The electrode locations shuffling “collapsed” the patterns of CAT-ELSs before and after 

tetanization in a living MEA culture. The difference between before and after tetanization trajectories 

(compared to Figure 3.8B) was reduced in CAT-ELS. D. The statistics of C/D for CAT-ELS in living 

networks (n= 60, 6 experiments, 10 shuffles for each experiment). The change across the tetanus was not 

significantly different than the drift before the tetanus (p-value= 0.19, Wilcoxon signed rank test), unlike 

CAT (**, p-value< 1e-4). Thus, for both simulated and living networks, the shuffling of signals from 

different electrodes greatly reduces the performance of CAT for detecting stimulus-induced synaptic 

change over a background of continual synaptic drift. 
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 For living MEA cultures, one example of the comparison between CAT and 

CAT-ELS is shown in Figure 3.10B. The corresponding CAT-ELSs before and after 

tetanization from every block are shown in Figure 3.10C. The electrode location shuffling 

“collapsed” the patterns of CAT-ELSs before and after tetanization (compare to Figure 

3.8B). The difference between Pre-tetanization and Post-tetanization clusters found in 

CAT was also reduced in CAT-ELS (Figure 3.10B). 

 The statistics of C/D for CAT-ELS (n= 60, 6 experiments, 10 shuffles for each 

experiment) are shown in Figure 3.10D. The change across the tetanus was significantly 

greater than the drift before the tetanus for CAT (p-value< 1e-4, Wilcoxon signed rank 

test), but not for CAT-ELS (p-value= 0.19).  

3.4 Discussion  

3.4.1 Statistics of functional plasticity in extracellular multi-electrode recording 

 While comparing firing rates shows plasticity in intracellular recordings of 

monosynaptically connected neurons, more detailed statistics are necessary for 

spatiotemporal population activity patterns in extracellular multi-electrode recordings. 

Electrode spacing on the order of hundreds of microns means that any induced or 

observed plasticity will span pathways of multiple neurons instead of neighboring 

monosynaptic neurons (Jimbo et al., 1999). Intracellularly, synaptic strength is directly 

observable by stimulating a presynaptic neuron while recording from an adjacent 

postsynaptic neuron. Extracellularly, synaptic noise across a chain of neurons and 

convergent pathways will obscure firing rate measures of stimulus-induced plasticity.   

 Alternatively, by incorporating the timing and spatial flow of activity, 

spatiotemporal patterns have been found both in vivo and in vitro. Spike sequences, 

imposed upon the network by behavioral manipulations, recur spontaneously during 

subsequent sleep episodes (Nádasdy et al., 1999; Nádasdy, 2000; Lee and Wilson, 2002). 
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Calcium imaging of cortical slices reveals re-activation of sequences of neurons, “cortical 

songs”, with distinct spatiotemporal structures over tens of seconds (Ikegaya et al., 2004). 

Robust recurrent spike patterns were also found in a detailed cortical simulation 

(Izhikevich et al., 2004) and in living slices (Fellous et al., 2004). CAT provides a new 

and simple statistic to detect spatiotemporal patterns in networks and extends the 

previous studies by quantifiably demonstrating its ability to discern plasticity.  

3.4.2 Region-specific plasticity 

 Although FRH included detailed temporal information about the activity 

dynamics at all electrodes, it was less capable of capturing network plasticity than CAT, 

which has the same temporal resolution as the FRH but “condenses” the spatial 

dimension by linear combination (see Equation 3.1). We hypothesize this was due to the 

inclusion of spatial information of the electrode locations. The performance and the 

sensitivity of CAT with electrode locations shuffled was significantly worse than 

unshuffled CAT, both in simulation (the detectable MASC increased from 4.68% to 

10.8%, and the sensitivity decreased from 88.7% to 35.4%) and in living networks (the 

change across the tetanus was significantly greater than the drift before the tetanus for 

CAT, but not for CAT-ELS) (see Figure 3.10 and Table 3.1). This indicates that activity 

varied systematically with electrode location, and also suggested that the observed 

network plasticity was region-specific: the plasticity was not symmetrically distributed 

throughout the network. This further suggests that despite the apparent random 

connectivity of cultured neurons, neuron location played a role in tetanus-induced 

plasticity.  

 Region-specificity was not limited to plasticity induced by tetanization. In 

simulation, we also altered the weights of randomly-selected synapses in reference 

networks to different degrees to generate different new network states. CAT still showed 

the highest sensitivity to changes in MASC, and furthermore, the sensitivity of CAT-ELS 
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was still significantly lower (data not shown). Despite the synaptic plasticity not being 

region specific, the spatiotemporal flow of neural activity was region dependent, 

effectively making the plasticity of neural activity region specific. This result supports 

the notion of synfire chains or braids of neural activity (Ikegaya et al., 2004), where 

information is transmitted in a pipeline of neighboring pathways as opposed to a single 

string of connections. In this study, tetanization was used to obtain different synaptic 

states since it provided a more realistic form of plasticity, and a more straight-forward 

comparison to our study of local functional plasticity in living networks.  

 A common misconception regarding dissociated cultures is that they are random, 

homogenous, and lack structure, and thus cannot support stable changes to synaptic 

weight associated with memory formation. While plated from a random cell suspension, 

microscopic observation reveals that a heterogeneous arrangement develops over time 

(Gross and Kowalski, 1999; Segev et al., 2003). Although very different than structures 

found in vivo, the ability of neurons and glia to interact remains and a network having a 

diverse array of activity patterns arises spontaneously (Wagenaar et al., 2006c). Altering 

sensory input of thalamic relays to cortical areas has demonstrated that the cortex 

develops structure according to the type of the sensory input (Sur et al., 1988), which 

suggests an important relationship between neural structure and function. CAT 

demonstrates that structure is also relevant to neural function in a cultured network, and 

that tetanic stimulation alters network function. Future experiments will incorporate 

closed-loop sensory-motor feedback and optical imaging to investigate the network 

mechanisms of our cultures to functionally and structurally adapt to environmental 

interaction (Potter et al., 2006). 

3.4.3 CAT vs. population coding 

 It is important to note that CAT is distinct from the population vector description 

of neural activity (Georgopoulos et al., 1986; Caminiti et al., 1990). Population coding, 
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which is widespread in the brain and in invertebrate nervous systems, has been found in 

the motor cortex (Georgopoulos, 1994), premotor cortex (Caminiti et al., 1990), 

hippocampus (Wilson and McNaughton, 1993a) and other cortical areas. It demonstrates 

how the firing rates of a group of broadly tuned (e.g., to a direction of arm movement) 

neurons, taken together, provide an accurately tuned representation. With population 

codes, a fixed-weight linear combination of neuronal activity is projected in a sensory 

input space or a motor output space (Carmena et al., 2003). In contrast, CAT incorporates 

information about the physical recording locations into its linear combination calculation, 

and projects neuronal activities recorded at different sites into the actual neuronal 

location space in order to depict the dynamics of the population activity. Furthermore, the 

linear combination of activities in CAT is normalized by the total firing rate across all 

electrodes (see Equation 3.1). 

 CA is a measure of the asymmetry of the spatial activity distribution, and CAT is 

a measure of its dynamics. Incorporating information of electrode locations in the 

calculation of CAT was inspired by the differential firing rate statistic described by 

Wagenaar et al. (2006), where differences between firing rates from electrodes located at 

different quadrants of an MEA were used to describe the dynamics of spontaneous bursts. 

A similar measure of population activity flow was applied in a human study to quantify 

the trajectory patterns of the traveling electroencephalographic alpha waves across the 

scalp (Manjarrez et al., 2007). 

3.4.4 Plasticity vs. spontaneous bursting 

 Without external stimulation, the most prominent feature of spontaneous activity 

found in MEA cultures and in simulated networks is synchronous bursting (Wong et al., 

1993; Kamioka et al., 1996; Gross and Kowalski, 1999; Van Pelt et al., 2004; Wagenaar 

et al., 2005), and bursts were found to have effects on tetanus-induced synaptic plasticity 

in cortical neurons (Maeda et al., 1998b). In simulation, the network synaptic state after 
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tetanization was found to change gradually due to the presence of spontaneous bursts, 

which makes quantifying tetanus-induced plasticity difficult (Chao et al., 2005). In the 6 

experiments we performed on living MEA cultures, 8.57 ± 3.33 spontaneous bursts per 

minute and 16.06 ± 4.55 stimulus-evoked bursts per minute were observed. Even with the 

presence of the spontaneous bursts, the tetanus-induced plasticity was still detected by 

using CAT. By controlling the level of bursting in MEA cultures with multi-site 

stimulation (Wagenaar et al., 2005), we used CAT measure to demonstrate that a 

network’s ability to induce and/or maintain tetanus-induced plasticity could be enhanced 

by reducing the degree of bursting (Madhavan et al., 2007c) (also see Appendix F). 

3.5 Conclusion 

 CAT’s superior performance, sensitivity, and low computational load make it an 

attractive method for real-time applications. CAT can also be applied to in vivo multi-

electrode or optical recording studies for neural activity aligned to behavioral or sensory 

cues. As techniques for observing distributed activity become faster and more fine-

grained, studying the details of the spatial flow of activity through neuronal networks will 

reveal more and more about processes of learning and memory. 
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CHAPTER 4 

STABILIZI
G EFFECTS OF RA
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 We constructed a simulated spiking neural network model to investigate the effects of random 

background stimulation (RBS) on the dynamics of network activity patterns and tetanus induced network 

plasticity. RBS was used to re-afferent the sensory-deprived MEA cultures by continuous electrical 

stimulation, which is analogous to continuous sensory inputs and ongoing processing in the brain. To help 

visualize activity patterns and plasticity in our simulated model, we introduced new population measures 

called the center of activity (CA) and center of weights (CW) to describe the spatiotemporal dynamics of 

network-wide firing activity and network-wide synaptic strength, respectively. Without RBS, the network 

synaptic weights were unstable and often drifted after tetanization. In contrast, with RBS, the network 

synaptic weights remained close to their values immediately after tetanization. The simulation suggests that 

the effects of tetanization on network synaptic weights were difficult to control because of ongoing 

synchronized spontaneous bursts of action potentials. RBS helped maintain network synaptic stability after 

tetanization by reducing the number and thus the influence of spontaneous bursts. We used our simulated 

network to model the interaction between ongoing neural activity, external stimulation, and plasticity, and 

to guide our choice of sensory-motor mappings for adaptive behavior in hybrid neural-robotic systems or 

“hybrots.” We also propose a potential paradigm for hybrot control with RBS and tetanization in order to 

show goal-directed learning behavior. 

4.1 Introduction 

 In vitro model systems are helpful to understand brain functions because they 

reduce the brain’s overwhelming complexity. However, having been severed from the 

intact brain, they lack the rich sensory inputs the brain received continuously. In 

unanesthetized animals, cortical neurons display a combination of spontaneously 

generated and sensory-experience-dependent activity (Riva Sanseverino et al., 1973; 

Legendy and Salcman, 1985), which endows the brain with an ability to accommodate to 

dynamically changing inputs during development and throughout life (Katz and Shatz, 

1996). Sensory feedback in the brain also plays a critical role in learning in vivo. This has 

                                                 

 

 
x
 Adapted from: Zenas C. Chao, Douglas J. Bakkum, Daniel A. Wagenaar, and Steve M. Potter (2005): 

Effects of random external background stimulation on network synaptic stability after tetanization: a 

modeling study. Neuroinformatics 3:3, 263–280. 
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been widely demonstrated in learning and maintaining of accurate vocalizations, where 

various perturbations of auditory feedback elicited disruptions of the sequencing and 

timing of ongoing vocalization in humans (Lee, 1950; Houde and Jordan, 1998) and in 

songbirds (Sakata and Brainard, 2006). Sensory experience also modulates spine 

formation, plasticity, and maintenance, where a decrease in spine density was observed in 

the primary visual cortex of mice raised from birth in total darkness (Valverde, 1967; 

Nimchinsky et al., 2002) and in the rat hippocampus after entorhinal cortex lesions 

(Parnavelas et al., 1974). In order to study learning using in vitro neuronal networks 

(which are usually sensory-deprived), this evidence suggests the importance of 

incorporating continuous sensory input, or re-afferentation.  

 Spontaneous bursting, a transient increase in the population firing rate, is a 

characteristic activity pattern in sensory-deprived neuronal networks. Reduced inputs 

from other brain areas result in large-scale synchronized bursting, such as bursting in 

mammalian thalamus during drowsiness, sleep, or anaesthesia (Steriade et al., 1993; 

Krahe and Gabbiani, 2004). Bursts of synchronized firings occur in the developing retina 

in the dark (Meister et al., 1991; Wong et al., 1993), and disappear after the retina 

becomes mature and visually responsive (Demas et al., 2003). In vivo cortical slabs 

isolated from thalamic and cortical inputs exhibit spontaneous oscillations of population 

firings (Timofeev et al., 2000), whereas intact and awake cerebral cortex displays activity 

patterns in a much richer spectrum (Steriade et al., 1993; Steriade, 1996). Spontaneous 

population bursts were also widely observed in in vitro networks prepared from the 

cortex (Murphy et al., 1992; Gross et al., 1993a; Kamioka et al., 1996; Canepari et al., 

1997; Latham et al., 2000b; Wagenaar et al., 2006c), hippocampus (Garaschuk et al., 

1998), spinal cord (O'Donovan et al., 1998; Tscherter et al., 2001), and retina (Meister et 

al., 1991). Furthermore, the bursting activity pattern could disrupt long-term potentiation 

(LTP) in hippocampal slices (Moore et al., 1993; Hu et al., 2005). This suggests that 
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spontaneous bursts in sensory-deprived networks might alter previous stimulus-induced 

changes in synaptic strengths.  

 Activity-dependent modification of synaptic strengths plays a central role in the 

processes of learning and memory in the central nervous system (Bliss and Collingridge, 

1993). In cultured cortical networks, those changes have been experimentally induced by 

a strong electrical stimulation called a tetanus. Jimbo and co-workers have shown that 

these cellular plasticity mechanisms scale to the network level, studied in cultured 

neurons on multi-electrode arrays (MEAs) (Jimbo et al., 1999). In their studies both LTP 

and long-term depression (LTD) were observed, though the change could not be 

predicted nor controlled. This lack of predictability and controllability makes it difficult 

to create effective learning protocols for hybrots (see Chapter 1). We hypothesize that the 

effects of a tetanus on network synaptic strengths are difficult to control because the 

synaptic weights are also being altered by spontaneous bursts. This could be avoid by 

reducing the occurrence of spontaneous bursts by re-afferentation.  

 In order to restore sensory input to cultured MEA networks to obtain more 

controllability over stimulus-induced plasticity, we designed a stimulation protocol called 

random background stimulation (RBS). With random stimuli distributed over all 

electrodes at an aggregate frequency of 1 Hz in the simulated networks of Chapter 2, 

tetanus-induced changes in network synaptic weights were stabilized. We hypothesized 

that RBS negated “attractors” in network synaptic weight distributions caused by 

spontaneous bursts, and prevented network synaptic weights from drifting to such 

attractors after inducing plasticity with electrical stimulation. This is consistent with 

results from another simulation study of 1,000 excitatory neurons, where random 

activation counterbalanced degradation of synaptic weights and maintained the basins of 

attraction of all memories (Horn, 1998).  

 In a different approach, a burst-control stimulation protocol consisting of a group 

of electrodes cyclically, not randomly, stimulated with an aggregated frequency of 50 Hz 
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was found to completely eliminate spontaneous bursts in dissociated cortical cultures 

(Wagenaar et al., 2005). Similar to RBS, the burst-control stimulation stabilized tetanus-

induced plasticity in dissociated cortical cultures (Madhavan et al., 2007c). However, 

different mechanisms might be involved. RBS evoked network-wide responses with 

unbiased spatiotemporal structure, while the burst-control stimulation desynchronized 

spontaneous activity into spatially-localized and temporally-dispersed responses.  

 Here, we demonstrate the stabilizing effects of RBS on stimulus-induced 

plasticity, and propose a potential paradigm for hybrot control with RBS and tetanization 

in order to show goal-directed learning behavior, which became the precursor of our 

closed-loop design described later in Chapters 5 and 6. 

4.2 Methods 

4.2.1 Living cultured neuronal network model 

4.2.1.1 Cell culture, recording and stimulation system 

 Dense cultures of dissociated neocortical neurons (2500 cells/mm
2
) were prepared 

as described before (Potter and DeMarse, 2001). The details of cell culture protocol used 

in this work are also described in Appendix C.  

4.2.1.2 Stimulation protocol 

 Random background stimulation (RBS) was performed on one cultured network. 

For all 53 usable electrodes, 53 trains of 1/53 Hz stimulation generated by a Poisson 

process were applied. The spatiotemporal structure of RBS is identical to random probing 

sequence (RPS) described in Chapter 3 (Section 3.2.1.3), where each usable electrode 

stimulated the network with different random sequences, averaging 1 pulse per second 

for the whole array (also see RBS in simulated networks in Section 4.2.2.1). However, 

the purpose of RPS was to evaluate network instantaneous input-output properties in a 
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short period of 10 minutes, whereas RBS was continuously delivered as an artificial 

sensory input to the sensory-deprived network.  

4.2.2 Artificial neural network model 

 For simulation experiments, we used five 1,000-LIF-neuron simulated networks, 

as described previously in Chapter 2, each with a different connectivity.  

4.2.2.1 Artificial neural network initialization and stimulation protocol 

 All excitatory synaptic weights were initially set to 0.05 and could vary between 

zero and 0.1 due to STDP. At the maximal weight, each spike would have a 50% 

probability of evoking a spike in postsynaptic neuron, due to its summation with intrinsic 

noise (Figure 2.7). The synaptic weights for the inhibitory connections were fixed at -

0.05. The networks were run for 2 hours in simulated time until the synaptic weights 

reached the steady state. Most of the excitatory synaptic weights (93 ± 2%) in 5 simulated 

networks were less than 0.01 or greater than 0.09 (Figure 2.8). This bimodal steady-state 

distribution of weights arose from the STDP learning rule, as previously observed by 

Song et al. (Song et al., 2000), and Izhikevich et al. (Izhikevich et al., 2004). The set of 

synaptic weights after 2 hours, which stabilized without external stimuli, was used for the 

subsequent simulation experiments as the initial state.  

 Two types of electrical stimuli were delivered to the simulated networks, 

tetanization and background stimuli. Tetanization was applied simultaneously at two 

stimulation electrodes (electrode 33 and 66, in column-row number, see Figure 2.1) at 20 

Hz for either 10 seconds or 5 minutes; tetanization was used to induce change in the 

network synaptic weights (as described in Chapter 3). The background stimuli were 

applied to all 64 electrodes, one at a time, with random intervals generated by Poisson 

processes, at an average rate of 1/64 Hz per electrode. Thus, each electrode stimulated the 
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simulated network with different random sequences, averaging 1 pulse per second for the 

whole array.  

 Four experiments were performed on each of five simulated networks to 

investigate how the tetanization and the random multi-site background stimulation 

affected the network synaptic weights: 

1. “Short”: Spontaneous activity was recorded for 10 minutes (pre-tetanization period), 

before a short tetanization was applied for 10 seconds. After tetanization, 

spontaneous activity was recorded for an additional 50 minutes (post-tetanization 

period). 

2. “Long”: Same as “Short”, but the tetanization period was 5 minutes instead of 10 

seconds. 

3. “Short+Background”: Same as “Short”, but with random multi-site background 

stimulation turned on during the whole simulation. 

4. “Long+Background”: Same as “Long”, but with random multi-site background 

stimulation turned on during the whole simulation. 

4.2.2.2 Measures of network activity and network synaptic weight 

 To help visualize activity patterns and plasticity in the artificial neural network, 

we used the center of activity (CA) (described in Section 3.2.1.5 and Equation 3.1) and 

center of weight (CW) (analogous to center of gravity) to describe the spatiotemporal 

dynamics of the network-wide firing activity and network-wide synaptic strength in our 

simulated networks, respectively.  

4.2.2.3 Calculation center of activity trajectory (CAT) 

 Center of activity trajectory (CAT) was used to quantify the spatiotemporal 

patterns of network-wide population activity. The definition, implementations and 

properties of CAT are described in Section 3.2.1.5 and Equations 3.1 and 3.2.  
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4.2.2.4 Spontaneous burst detection and clustering of burst CATs 

 Spontaneous bursts in simulated networks were classified into different clusters 

according to their CATs. A firing rate histogram was obtained by counting the number of 

spikes network-wide in 10 msec bins. Bins with more than 20 spikes were considered a 

part of a burst. The length of the burst was defined as the time span of consecutive bins 

with a number of spikes over this threshold. CATs were calculated for each burst and 

aligned to each other at the peaks of the corresponding firing rate histograms. This 

alignment had similar results but operated more efficiently compared to shifting the lag 

on one trajectory to gain the highest cross-correlation with another. The beginnings 

and/or the ends of the CATs of shorter than maximum length were padded with zeros. 

Each same-length CAT then was reshaped into a one-dimensional vector by appending 

the y values of its CAT to the x values. Clustering was performed with the k-means 

algorithm, run multiple times for different k values. The best of the clustering results was 

selected by choosing the k value with best Davies-Bouldin validity index (Davies and 

Bouldin, 1979).  

4.2.2.5 Calculation of center of weights (CW) and center of weights trajectory (CWT) 

 Plastic changes in the simulated networks’ functional architecture can be 

represented by the trajectory of the center of weights (CW). Let W be a 1 by @ vector, 

where @ is the total number of excitatory synapses, representing the weights of every 

synapse at time t. Let Xi and Yi indicate the horizontal and vertical distances from the 

postsynaptic neuron of the ith synapse to the center of the dish. Then, the CW of time t is 

a two dimensional vector: 
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The CWT from time t0 to t1 with time step Ct is defined as:  
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 Note that while the CAT describes the spatiotemporal patterns of signal 

propagation in typically brief time intervals, the CWT shows the dynamics of connection 

strengths changing over a typically larger time scale. In our case, the CA represented the 

neural activity flowing during a burst while the CW described the network’s plasticity 

over the duration of a simulation. 

4.3 Results 

 Our leaky integrate-and-fire (LIF) model networks and the living networks 

expressed similar activity patterns and input-output properties (see Section 2.3).  

4.3.1 Tetanus-induced plasticity in the spatiotemporal pattern of spontaneous bursts 

 In order to investigate the effects of tetanization on patterns of spontaneous 

activity, the CATs were calculated for every spontaneous burst in the artificial neural 

networks. 2387 bursts were detected in the “Long” experiment on the network 

represented in Figures 4.4 and 4.5. The CATs of these bursts were calculated and 

classified by the k-means clustering algorithm (see Section 4.2), and eleven clusters were 

found (Figure 4.1A). 

 The simulated network’s spontaneous activity was changed by a 5-min 

tetanization (Figure 4.1B). Some types of bursts happened mostly in the 10-min pre-
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tetanization period, such as clusters 5, 9 and 11, while different bursts happened in the 

post-tetanization period, such as clusters 1, 3, 7, 8 and 10. Most of the clustered bursts 

ceased to occur for some minutes after tetanization and reappeared later. For example, 

cluster 2 reappeared around t = 25 min, sooner than cluster 4, which reappeared around t 

= 40 min. Some clusters were transient, such as cluster 1 being highly concentrated 

around t = 30 min. A similar tetanus-induced change in the spatiotemporal structure of 

spontaneous bursts was observed in living MEA cultures (see Figure E.1). 
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Figure 4.1. CAT of spontaneous bursts in a “Long” experiment in one network: Different 
kinds of spontaneous bursts occurred in different periods. A. Different classes of CATs of spontaneous 

bursts. A total of 2387 bursts were detected. The CATs of these bursts were classified by the k-means 

clustering algorithm, and eleven classes were found. The CATs for different clusters were plotted 

separately. The coordinate shown in the lower-left corner represents the 3mm by 3mm area of the “dish”. 

The trajectories belonging to the same cluster are overlaid together. The averaged trajectories of each 

cluster are shown by a trace of circles, dark and large for the start of the trajectory, lighter and smaller 

towards the end. B. The occurrences of different types of spontaneous bursts. The x-axis represents time in 

minutes, and the y-axis indicates the cluster index that corresponds to the index shown in A. The shading 

represents the frequency of occurrences of the spontaneous bursts measured in every 10 seconds; the 

corresponding grayscale is shown at right. Notice that there is no spontaneous activity during tetanization 

(from 10-15 min). Marked periods are: P, Pre-tetanization; T, Tetanization; D, Post-tetanization (drifting) 

and S, Post-tetanization (steady) (see Section 4.3 and Figure 4.2B) 
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4.3.2 RBS stabilized tetanus-induced changes in network synaptic weights 

 We studied the changes in synaptic weights that might underlie the differences in 

spontaneous barraging activity before and after tetanization. The CWT of the simulated 

synaptic weights, shown in the “Long” experiment in Figure 4.2B, was calculated and 

sampled at 2 Hz over the entire 67 minute simulation. The trajectory was divided into 

four periods (Figure 4.1B): 

1. Pre-tetanization (P): from t = 0 min to t = 10 min, the CWT remained within a 

localized area we termed a “steady state”.  

2. Tetanization (T): from t = 10 min to t = 15 min, the CW was driven away from the 

steady state of period P. No spontaneous bursts occurred during this period.  

3. Post-tetanization drifting (D): from t = 15 min to t = 60 min, after the tetanization, 

the CW drifted for about 45 minutes without external stimulation. As shown in 

Figure 4.1B, different types of spontaneous bursts gradually appeared and 

disappeared during this period.  

4. Post-tetanization steady-state (S): after t = 60 min, the CW arrived at a new steady 

state where it remained. 

 

 We compared the effects of 10-sec and 5-minute tetanizations by investigating the 

CWTs between the “Short” and the “Long” experiments (Figures 4.5A and 4.5B), and the 

“Short+Background” and the “Long+Background” experiments (Figures 4.5C and 4.5D). 

All drove the CW away from the pre-tetanization steady state (light grey). The CW 

distance between the centroid of the pre-tetanization steady state and the tetanization end 

point was used to quantify the effects of tetanization in changing network synaptic 

weights. This distance and standard error of the mean (SEM) (n = 5 simulated networks) 

was 79.5 ± 6.0 µm in the “Long” experiments, significantly greater than 28.9 ± 2.5 µm in 

the “Short” experiments (p-value < 10
-4
, two-tailed t-test); and was 75.7 ± 5.2 µm in the 
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“Long+Background” experiments, significantly greater than 32.8 ± 2.8 µm in the 

“Short+Background” experiments (p-value < 10
-4
) (Figure 4.3A). 

 In previous studies to model the restoration of sensory input to our living in vitro 

networks, we applied multi-site background stimulation. This decreased or eliminated the 

occurrence of spontaneous bursts when delivered at an aggregated frequency of ≥  20 Hz 

(Wagenaar et al., 2005). Here, using our simulated networks, we investigated the 

influences of simulated random multi-site background stimulation on the short and long 

tetanizations by quantifying the differences in CWTs with or without low-frequency 64-

electrode RBS (averaging 1 Hz) (Figure 4.2). With RBS, the CW did not move back to 

the pre-tetanization steady state even after only 10 seconds of tetanization, unlike without 

RBS (Figure 4.2C). The CW distance between the centroids of pre- and post-tetanization 

steady states was used to quantify the difference between the “Short” and the 

“Short+Background”. The distance was 7.17 ± 1.01 µm (n = 5 simulated networks) in the 

“Short” experiments, much shorter than 56.2 ± 10.5 µm in the “Short+Background” 

experiments (p-value < 0.001) (Figure 4.3B).  

 In addition to preventing “turning-back” of the CW after a 10-sec tetanization, 

background stimulation also reduced “drifting-away” of the CW after a 5 minute 

tetanization. CWTs of a “Long” and “Long+Background” experiment from the same 

network are shown in Figure 4.2. With RBS, the CW stayed near its value immediately 

after tetanization (Figure 4.2D). Without random multi-site background stimulation, the 

CW drifted and came to rest at a new steady state (Figure 4.2B). The CW distance 

between the centroid of the post-tetanization steady state and the turn-off point of the 

tetanization (large “X”) was used to quantify the drifting of the CW after the tetanization. 

This distance was 77.6 ± 15.2 µm (n = 5 simulated networks) in the “Long” experiments, 

much longer than 24.0 ± 7.1 µm in the “Long+Background” experiments (p-value < 0.01) 

(Figure 4.3B). 
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Figure 4.2. Comparison of CWTs from four experimental conditions on a simulated 

networks: Random multi-site background stimulation maintained the network synaptic stability by 
reducing the “turning-back” and “drifting-away” of the CWTs after 10-sec and 5-min tetanizations 

respectively. CWTs, sampled at 2 Hz, are shown for one of the five networks for the “Short” experiment 

(A), the “Long” experiment (B), the “Short+Background” experiment (C) and the “Long+Background” 

experiment (D). The light-gray circles, mid-gray triangles, dark-gray diamonds and black squares represent 

the Pre-tetanization period, Tetanization period, Post-tetanization drifting period (in A and B only) and 

Post-tetanization steady period respectively. The turn-off points of tetanization are marked with “X”. 

Notice that with RBS, the CWT stayed near the point where the short tetanization was turned off without 

turning back toward the Pre-tetanization steady state (compare A and C). For long tetanizations, the random 

multi-site background stimulation kept the CWT near the point where the tetanization was turned off 

without drifting away (compare B and D). 

 

 Although background stimulation stabilized the network against large CW drift, 

small CW variations in the pre- and post-tetanization steady states were higher with the 

background stimulation than those without background stimulation (Figure 4.2). The 

mean distance of individual CWs in the pre-tetanization steady state from their centroids 
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was used to quantify the spread of the CW. The spread was 2.9 ± 0.2 µm (n = 5 simulated 

networks) without background stimulation, smaller than 9.8 ± 0.8 µm with background 

stimulation (p-value < 10
-4
). This spread was compared to the change of CW caused by 

tetanization, which was quantified by the CW distance between the centroid of the pre-

tetanization steady state and the tetanization end point. Without background stimulation, 

the spread was significantly smaller than the short tetanization-induced change (p-value < 

10
-6
) and significantly smaller than long tetanization-induced change (p-value < 10

-6
). 

With background stimulation, the spread was significantly smaller than the short 

tetanization-induced change (p-value < 10
-4
) and also significantly smaller than long 

tetanization-induced change (p-value < 10
-5
) (Figure 4.3A). 
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Figure 4.3. Statistics of CWTs from 5 simulated networks: RBS did not affect the amount of CW 

change induced by tetanization, and had a stabilizing effect on CWT after tetanization. A. The change of 

CW after tetanization was significantly greater than the spread of CW in Pre-tetanization period. The 

spread of CW without background stimulation was significantly smaller than with background stimulation 

(marked *, n = 5 simulated networks, p-value < 10
-4
). This spread was compared to the change of CW 

caused by tetanization (see Section 4.3). Without background stimulation, the spread was significantly 

smaller than both the tetanization-induced changes in the “Short” experiments (p-value < 10
-6
) and the 

“Long” experiments (p-value < 10
-6
). With background stimulation, the spread was significantly smaller 

than both the tetanization-induced changes in the “Short+Background” experiments (p-value < 10
-4
) and the 

“Long+Background” experiments (p-value < 10
-5
). The CW change induced by long tetanization was 

greater than that induced by short tetanization, both without background stimulation (p-value < 10
-4
) and 

with background stimulation (p-value < 10
-4
). Vertical bars represent significant differences between values 

(marked *, p-values < 10
-4
). B. The CW distance between centroids of Pre- and Post-tetanization steady 

states was used to quantify “turning-back” of the CWT after 10-sec tetanization (Figure 4.2A). With RBS, 

the CW of the Post-tetanization steady state stayed significantly farther from the Pre-tetanization steady 

state after the short tetanization (marked **, p-value< 0.001). The CW distance between the centroid of the 

Post-tetanization steady state and the turn-off point of the tetanization was used to quantify the “drifting-

away” of the CW after the 5-min tetanization (Figure 4.2B). With RBS, the CW of the Post-tetanization 

steady state drifted significantly less after the long tetanization than without (marked *, p-value< 0.01). 

 

4.4 Discussion 

4.4.1 Effects of random multi-site background stimulation in simulated and living 

networks 

 RBS helped maintain the stability of network synaptic weights after tetanization 

in simulated networks. The CW plots (Figure 4.2) showed that the network synaptic 
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weights tend towards a localized set of values, and that tetanization moves the network 

synaptic weights away. In the absence of background stimulation, the CW returned to 

near its previous locus after a short tetanization, suggesting this locus served as an 

attractor. After a long tetanization, the CW drifted for some time before settling on a new 

attractor, suggesting the tetanization effect is not stable. With background stimulation, a 

short tetanization can change the network synaptic weights (Figures 4.5 and 4.6); to use a 

mechanical analogy, the ‘elastic’ change becomes a ‘plastic’ change. A long tetanization 

will drive the network to a new locus, where it remains without drifting. The observation 

of attractors in synaptic weight space suggests that a form of self-organization or 

homeostasis exists in the interaction of synaptic weights and network activity; however, 

much remains to be studied about the mechanisms of this interplay. 

 We hypothesized that the network synaptic weights drifted after a tetanization 

because of the ongoing spontaneous activity, consisting of mostly spontaneous bursts 

(Figure 4.1B). Spontaneous activity and network synaptic weights interacted with each 

other until reaching a stationary set of patterns (trajectories) in CA space and an attractor 

in CW space. With RBS, spontaneous activity was reduced, and so the network synaptic 

weights were mainly affected by stimulus-evoked activity. Since background stimulation, 

and consequently the evoked activity, was random spatially and temporally, these stimuli 

had an unbiased randomizing effect on changing network synaptic weights. Thus, the size 

of CW attractors was greater with the background stimulation than without it (Figures 4.5 

and 4.6). In summary, while the background stimulation stabilized the network synaptic 

weights by preventing the directional drift caused by influences of transient spontaneous 

bursts after tetanization, the randomizing effect also increased the variation of network 

synaptic weights isotropically.  

 In both simulated networks and living cultured networks, spontaneous bursts were 

reduced by RBS and stimulus-evoked activity became dominant. Random multi-site 

background stimulation was applied to living neural networks also, and neural activity 
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was recorded and compared to that of the simulated neural network (Figure 4.4). In a 

typical one-minute recording, the ratio of the number of evoked bursts versus 

spontaneous bursts was 41:1 in the living network compared to 42:3 in the simulated 

network. Moreover, the spontaneous burst rate was reduced from 0.70 Hz to 0.017 Hz (1 

burst in 1 minute) in the living network and was reduced from 0.73 Hz to 0.05 Hz (3 

bursts in 1 minute) in the simulated network (see Figure 2.9). 
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Figure 4.4. Comparison of network activity with RBS in living and simulated networks: In 
the presence of background stimulation, the network activity consisted mostly of evoked responses, both in 

living networks and simulated networks. A. A 1-minute recording from a living network with background 

stimulation by 60-channel MEA is shown in a rasterplot (upper panel, spikes recorded in the i-th electrode 

were randomly spread out in the interval [i-0.5 i+0.5] on the y-axis for clarity) and the corresponding firing 

rate histogram (lower panel, bin size is 100 msec). B. A 1-minute simulation with background stimulation 

is shown as a raster plot (upper panel) and the corresponding firing rate histogram (lower panel). The 

timings and channels of applied stimuli are shown as black dots in the raster plots and on the x-axes in the 

histograms. The ratio of the number of evoked bursts versus spontaneous bursts was 41:1 in the living 

network compared to 42:3 in the simulated network. Moreover, the spontaneous burst rate was reduced 

from 0.70 Hz to 0.017 Hz (1 burst in 1 minute) in the living network and was reduced from 0.73 Hz to 0.05 

Hz (3 bursts in 1 minute) in the simulated network (see Figure 2.9). 
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4.4.2 Stability in other systems 

 Long-term stability of spontaneous activity patterns was found in cortical slice 

cultures (Beggs and Plenz, 2004; Ikegaya et al., 2004), suggesting these recurrent patterns 

could be used by cortical circuits to store information for memories. Our simulation 

results support this hypothesis by showing that for an attractor in CW space, a finite set 

of clustered CATs recurs. The results also show that tetanizations changed the network to 

different attractors, and RBS eliminated CW drift after a tetanization. This suggests the 

tetanization altered the contents of the memory stored in the network, and that RBS 

reduced spontaneous transients, allowing a greater control over network plasticity. 

Results of tetanization on living networks support this view (Wagenaar et al., 2005; 

Madhavan et al., 2007c) (also see Appendix F). 

4.4.3 Control of network synaptic weights and implementation in hybrots 

 The use of MEAs in hybrots provides a model system to simultaneously study 

behavior and detailed neuronal function, including plasticity underlying adaptation or 

learning. In our experiments, a tetanus was used to induce plasticity. By adding 

background stimulation, the plasticity remained while the stability needed for memory 

was provided. 

 We created motor mappings to control the behaviors of a robot based on the 

activity in a real neuronal network, and sensory mappings to stimulate the network based 

on the sensory input from a hybrot (Bakkum et al., 2004). The first step to demonstrate 

learning behavior, begun in this simulated modeling study, is to search for the 

relationship between the network synaptic weights and the network spatiotemporal 

activity patterns. We demonstrated that tetanization drives the network from one attractor 

to another. This is promising for hybrots, because if we can induce the network synaptic 

weights to change, we can show the behaviors of a robot changing from one mode to 

another mode to demonstrate adaptive learning. 
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 A potential mapping for hybrot control is to use the CAT of the responses to RBS 

as motor commands (Figure 4.5). Different forms of tetanization have different effects on 

network synaptic weights (such as long vs. short tetanization, Figures 4.5 and 4.6) and 

can serve as the feedback to a living network representing different sensory inputs. In this 

case, network synaptic weights change during each tetanization, and the changes are 

stabilized by continuous random background stimulation. Therefore, the behavior pattern 

of the hybrot would change after each sensory feedback and remain steady until the next 

feedback. In this study we used the CWTs and the occurrence of spontaneous bursts with 

different CATs to illustrate network plasticity in model networks. However, these two 

quantities cannot be easily applied in living networks. First, the synaptic weights of a 

living culture are not directly measurable by the extracellular electrodes of our MEAs. 

Second, background stimulation reduces the frequency of spontaneous bursts in living 

networks; thus, not enough spontaneous bursts occur to reliably cluster their CATs nor to 

provide instant reaction for generating motor commands. Thus we expect the responses to 

background stimuli to be the better parameter for hybrot control.  
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Figure 4.5. A potential paradigm for hybrot control with RBS and tetanization: Two and a 
half command cycles are depicted above, separated by vertical dotted lines. Each cycle consists a tetanus at 

two channels and continuous random background at all 60 channels. The CATs of the responses to the most 

recent background stimulus at each channel in one cycle could be transformed into motor commands for a 

robot. The sensory feedback from the robot could be transformed into different forms of tetanization in the 

next cycle (in this figure, two different tetanizations are applied at two different pairs of electrodes). Based 

on our model, we expect the network synaptic weights to change in different ways depending on the 

sensory feedback since different tetanizations could have different effects. The continuous random 

background stimulation is expected to stabilize the weight changes (a series of hypothesized CWTs are 

shown in the bottom row). As a result, the behavior pattern of the hybrot would change after each sensory 

feedback and remain steady until the next feedback. 

 

4.4.4 CAT and CWT 

 Finding structure in the complexity of multiple time-varying neural signals is 

difficult and likely requires the creation of new mathematical tools (Pesaran et al., 2002; 

Baruchi and Ben-Jacob, 2004; Beggs and Plenz, 2004; Brown et al., 2004). The CA and 
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the CW were designed to map multiple spatiotemporal signals into a more 

comprehensible form while retaining enough detail to discriminate network states. The 

CAT and CWT give summary statistics about the network-wide properties as opposed to 

statistics on individual neurons. Note that the shapes of the trajectories are independent of 

the selection of the trajectory origin or of the spatial center of the network since they are 

linear summations of neural locations.  

 Most current methods for neural spike train data analysis, such as the cross-

correlogram, cross intensity function, and joint peri-stimulus time histogram, yield 

information only about associations between pairs of neurons (Brown et al., 2004). To 

give information on the whole network, these methods would require large computational 

power to go through every possible pair of neurons and require further statistics to 

compare more than two recordings. Although a CAT cannot provide detailed information 

about individual neurons, it has the advantage of depicting the spatiotemporal dynamics 

of the whole network (see Chapter 3). 

4.5 Conclusion 

 Using artificial neural networks to control robots is an active area of research and, 

in addition to directing studies in living neural networks, holds the potential for many 

promising products (Brooks, 1999; Krichmar and Edelman, 2002; 2004; Schaal et al., 

2004). Most work in AI and robotic systems faces limitations in the ability to adapt to 

novel situations in real-time. By contrast, it is clear that biological neural systems excel at 

this. Much can be learned from the activity, morphology, and connectivity of biological 

neural networks to inform the design of future artificial networks. If future research on 

living networks demonstrates that directed functional changes can be obtained by 

stimulating the network, then we expect to find corresponding morphological changes. 

Imaging neuronal networks using time-lapse multiphoton microscopy (Potter, 2000; 

Potter et al., 2001) is compatible with many-neuron electrophysiology. We are building a 
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dedicated 2-photon/MEA microscope (Rambani et al., 2005). The “brain” of the hybrot 

system, unlike an animal’s brain, holds still during behavior, and can be imaged in its 

entirety (Bakkum et al., 2004). 

 We have explored the effects of multi-site background stimulation on networks 

(Wagenaar et al., 2005; Madhavan et al., 2007c). We are applying a synergy of modeling 

simple networks, and multi-unit experimentation on substantially more complex living 

ones. Simulated network studies help suggest new experiments for studying learning in 

vitro, while the experimentation helps us come up with better simulated models for the 

network-level properties of neural circuits. By embodying in vitro networks with hybrots 

in closed-loop systems, we can more easily observe the cellular and network mechanisms 

of learning while it happens than with in vivo models, and ensure that any changes 

induced by the stimuli have functional consequences on hybrot behavior. The closed-loop 

paradigm proposed in Figure 4.5 further became the precursor of our closed-loop design 

for goal-directed learning described later in Chapters 5 and 6. 
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CHAPTER 5 

CLOSI
G THE LOOP: ADAPTIVE GOAL-DIRECTED BEHAVIOR 

WITH SIMULATED 
ETWORKS
xi
 

 

 The acts of learning and memory are considered to emerge from the modifications of synaptic 

connections between neurons, as guided by sensory feedback during behavior. However, much is unknown 

about how such synaptic processes can sculpt and are sculpted by neuronal population dynamics and an 

interaction with the environment. Here, we embodied a biologically-inspired simulated network with an 

artificial animal (an animat) through a sensory-motor loop, a refined design from the paradigm proposed 

previously (see Section 4.4.3). The application of training stimuli contingent on behavioral performance 

directed network plasticity and shaped the network to learn various multi-task goals. An individual network 

had the flexibility to achieve different multi-task goals, and the same goal behavior could be exhibited with 

different sets of network synaptic strengths. When training stimuli were replayed to the same network (a 

non-contingent control), behavior did not reach the goal, demonstrating the importance of feedback. 

Additionally, the closed-loop training algorithm was verified in a living cortical culture. While lacking the 

characteristic layered structure of in vivo cortical tissue, these monolayer networks, when incorporated in a 

closed-loop system, could tune their activity in behaviorally relevant manners, demonstrating that in vitro 

neural networks have an innate ability to process information. This closed-loop hybrid system is a useful 

tool to study the network properties intermediating synaptic plasticity and behavioral adaptation. The 

training algorithm provides a stepping stone towards designing future hybrid control systems, whether with 

artificial neural networks or living ones.  

5.1 Introduction 

 One of the most important features of the brain is the ability to adapt or learn to 

achieve a specific goal, which requires continuous sensory feedback about the success of 

its motor output in a specific context. Previously, an embodied cultured network’s ability 

to control an animat or a mobile robot was demonstrated without a specifically defined 

goal (DeMarse et al., 2001; Martinoia et al., 2004) (see the summary of previous studies 

on embodied cultured networks in Table 1.2). In other studies, animats were designed to 

avoid obstacles (Cozzi et al., 2005) or follow objects (Bakkum et al., 2004), but 

deterministically and without learning. Without a pre-defined goal, Mussa-Ivaldi et al. 

                                                 

 

 
xi
 Under review as: Zenas C. Chao, Douglas J. Bakkum, and Steve M. Potter (2007): Shaping embodied 

neural networks for adaptive goal-directed behavior. PLoS Computational Biology.  
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(Mussa-Ivaldi and Miller, 2003) showed adaptive phototactic behavior in an embodied 

lamprey brainstem without additional external training stimulation. In order to further 

understand the learning capability of an embodied cultured network for goal-directed 

behavior, we need to investigate how the network can be shaped and rewired, and how to 

direct this change. 

 Previous studies have demonstrated the potential for disembodied cultured 

networks to achieve functional plasticity (see Table 1.1 and Appendices E and F). This 

neural plasticity provides a potential learning capability to cultured networks. Jimbo et al. 

used a localized tetanic stimulus to induce long-lasting changes in the network responses 

that could be either potentiated or depressed depending on the electrode used to evoke the 

responses (Jimbo et al., 1999). Moreover, we and others previously found that such 

tetanus-induced plasticity was spatially localized and asymmetrically distributed (Ruaro 

et al., 2005; Chao et al., 2007c) (also see Chapter 3). By delivering two different tetanic 

stimulation patterns, Ruaro et al. trained a cultured network to discriminate the spatial 

profiles of the stimuli. These results suggest that different stimulation patterns can shape 

diverse functional connectivity in cultured networks. By incorporating closed-loop 

feedback, Shahaf and Marom (Shahaf and Marom, 2001) showed unidirectional learning: 

to induce an electrode-specific increase in response. This simple form of learning was 

achieved by a binary training: to stop a periodic stimulation at one electrode when the 

desired response level at the target electrode was obtained. In order to scale to more 

complex behavior, we need to create more structured training stimuli and detailed activity 

metrics to investigate whether an embodied cultured network can learn multiple tasks 

simultaneously.  

 Unlike in vivo systems, the sensory-motor mapping and training algorithm in an 

embodied cultured network are defined by the experimenters. In order to efficiently find 

an effective closed-loop design among infinite potential mappings, we first embodied a 

biologically-inspired simulated network to study an adaptive goal-directed behavior in an 
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animat: learning to move toward and stay within a user-defined area in a 2-D plane. We 

used the simulated network described in Chapter 2 to express spontaneous and evoked 

activity patterns similar to those of living MEA cultures (Chao et al., 2005). A similar but 

larger simulated network showed that localized coherent input resulted in shifts of 

receptive and projective fields similar to those observed in vivo (Izhikevich et al., 2004). 

Simulated networks are therefore useful for analyzing biological adaptation with various 

closed-loop designs. 

 The closed-loop design we discuss here consists of four novel elements:  

1. Patterned stimulation to induce network plasticity. This low-frequency training 

stimulation differs from most studies of cultured networks, where plasticity was 

induced by high frequency tetanic stimulation (Jimbo et al., 1999; Ruaro et al., 

2005).  

2. Continuous low-frequency background stimulation to stabilize accumulated 

plasticity (Chao et al., 2005) (Chapter 4), which is analogous to continuous 

sensory inputs and ongoing processing in the brain. 

3. Population coding for motor mapping. Population coding is considered a robust 

means to represent movement directions in the primary motor cortex 

(Georgopoulos et al., 1986). We used a novel population coding scheme, the 

center of activity (CA) (Chapter 3), to instruct movement outputs.  

4. Adaptive selection of training stimulation. Because the connectivity in a cultured 

network is not predictable, the effects of a given training stimulation cannot be 

known a priori. Thus we delivered training stimulation contingent on the animat’s 

performance in order to direct changes in network connectivity that further shift 

the animat’s behavior toward the desired behavior.  

 

 We demonstrate adaptive goal-directed behavior in the simulated network, where 

multiple tasks are learned simultaneously. The desired behavior could only be achieved 
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when the feedback was contingent on the network activity and the animat’s behavior. 

This suggests that even though a 2-D cultured network lacks the 3-D structure of the 

brain, it still can be functionally shaped and show meaningful behavior. We also 

validated the closed-loop design in a living cortical culture on a multi-electrode array 

(MEA). The proposed design is not restricted to a particular sensory-motor mapping, and 

could be applied with different and more complex goal-directed behaviors, which may 

provide a useful in vitro model for studying sensory-motor mappings, learning, and 

memory in the nervous system. 

5.2 Methods 

5.2.1 Simulation 

5.2.1.1 Animat 

5.2.1.1.1 Environment 

 The animat was controlled by a simulated network (see Chapter 2) to move in a 

plane within a circle of 50 units radius, which was divided into four quadrants (Q1: 

northeast, Q2: northwest, Q3: southwest, and Q4: southeast, see Figure 5.1A). The animat 

was put back to a random location within a smaller concentric circle of 5 units radius if it 

moved outside the outer circle. 

5.2.1.1.2 Multi-task goal 

 The goal of the animat was to move and stay within a smaller concentric circle of 

5 units radius. This goal consisted of four different sub-tasks, which were to move in four 

different desired directions in different quadrants. 
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5.2.1.1.3 Sensory system and motor capability 

 The sensory inputs of the animat were one of four discrete values representing 

which quadrant it was in (Q1- Q4) and whether the performance was desired (desired or 

undesired). The movement of the animat was implemented by population network 

responses to stimulation determined by the sensory input (see Closed-loop algorithm 

section below). The sensory input was evaluated to generate a movement every 5 seconds. 

5.2.1.2 Simulated network 

 The animat was connected to a simulated network through a sensory-motor loop 

(Figure 5.1A). We produced three artificial neural networks, as described in Chapter 2, 

with different connectivity. 

5.2.1.3 Closed-loop algorithm 

5.2.1.3.1 Stimulation protocols 

 We used three classes of stimulation protocols for three different purposes: (1) 

Four context-control probing sequences (CPSs) (CPSQ1- CPSQ4) were used to encode 4 

sensory inputs (current location= Q1- Q4) that also evoked neural activity used as motor 

commands for the animat. (2) Four “pools” of patterned training stimulation (PTS) 

(PTSQ1- PTSQ4), each also assigned to Q1- Q4, were used to induce network plasticity to 

train the animat. (3) Random background stimulation (RBS) was used to stabilize 

accumulated plasticity, as shown in Chapter 4 to stabilize network synaptic weights 

(Chao et al., 2005). 
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Figure 5.1. Closed-loop algorithm: A. Closed-loop design: the sensory mapping (�- �), the motor 

mapping (�- �), and the training feedback (�- �). B. Transformation for motor mapping. Refer to 

Section 5.2 for a detailed explanation. 
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1. Context-control probing sequence (CPS) 

 Four stimulation sequences were used (CPSQ1- CPSQ4). Each CPS consisted of a 

sequence of 3 stimulation pulses, one from each of 3 randomly selected electrodes with 

inter-pulse intervals randomly selected between 200 and 400 msec (Figure 5.1A). The 

last stimulus, termed probe, was unique to each CPS. For each experiment, the CPSs 

were fixed throughout.  

 Each CPS (CPSQ1- CPSQ4) was delivered every 5 seconds, when the 

corresponding sensory input (Q1- Q4) was evaluated. We used the evoked action 

potentials from the last stimulus (probe responses) to generate motor commands to 

control the animat. The context before the probe stimulus was found to influence the 

probe response (Darbon et al., 2002). Therefore, in order to directly quantify learning by 

changes in movement, we sought to reduce the variability in the probe response due to 

recent neural activity and stimulation history, such that changes in probe responses were 

due mainly to changes in network connectivity. We found that by controlling the 

stimulation context (the first two stimuli of a CPS) before the probe with inter-pulse 

intervals between 200 to 400 msec, the variability of the probe responses was minimized. 

Data supporting this in both simulated and living networks are shown in Appendix G. 

2. Patterned training stimulation (PTS) 

 Four pools of PTSs (PTSQ1- PTSQ4) were used, each associated with its 

corresponding quadrant. A PTS consisted of repetitive stimulation at two electrodes. The 

location of the first electrode (PTS-E1) was chosen as the probe electrode used in the 

preceding CPS (for PTSQ1, it was the last stimulus in CPSQ1). The two parameters varied 

among different PTSs in a pool were: the location of the second electrode (PTS-E2k), and 

the relative timing from the first electrode (inter-pulse interval, PTSΔt) (see Figure 5.1A). 

PTS-E2k was chosen from one of the 60 electrodes (k= 1- 60), and PTSΔt was chosen 

from one of 11 values: -100, -80, -60, -40, -20, 0, 20, 40, 60, 80, and 100 msec. Therefore, 



www.manaraa.com

 100 

each pool consisted of 660 (= 60*11) PTSs. Paired stimuli with different spatiotemporal 

structures induced different network synaptic plasticity (shown in Appendix H). Thus, the 

pool of 660 PTSs provides a variety of options to shape the network dynamics. 

 During training, a PTS was delivered repetitively at the pair of electrodes with 

random inter-PTS-intervals between 400 to 800 msec. Paired stimulation of 

monosynaptically connected neurons evokes STDP dependent on the stimulation interval 

(Bi and Poo, 1998), and paired stimulation of two electrodes has the potential to induce 

STDP throughout any shared activation pathways in the network.  

3. Random background stimulation (RBS) 

 RBS was delivered randomly at 60 electrodes, one at a time, with random inter-

pulse-intervals ranging from 200 to 400 msec (see Figure 5.1A). RBS of an aggregated 

frequency of 1 Hz was shown in Chapter 4 to have stabilizing effects on network synaptic 

weights in a simulated network after stimulus-induced plasticity (Chao et al., 2005). Thus 

we delivered RBS to maintain the network synaptic weights if the desired behavior was 

observed. In this study, the aggregated stimulation frequency of RBS was increased to 3 

Hz so that amounts of stimulation in RBS and PTS were comparable.  

 

 The closed-loop system consisted of three parts (see Figure 5.1A): the sensory 

mapping, the motor mapping, and the training feedback.  

5.2.1.3.2 Sensory mapping 

 One CPS (CPSQ1, CPSQ2, CPSQ3, or CPSQ4) was delivered every 5 seconds based 

on which sensory input was received (Q1, Q2, Q3, or Q4) (� and � in Figure 5.1A). 
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5.2.1.3.3 Motor mapping 

1. Center of activity (CA) 

 After delivering a CPS, the number of spikes within 100 msec after the probe 

were measured at 60 recording electrodes, and the center of activity (CA) was calculated 

(� in Figure 5.1A) (Equation 3.1). CA represents the spatial asymmetry of the activity, 

which is analogous to the center of mass.  

2. Population coding and motor mapping transformation: 

 We instructed incremental movement of the animat [dX, dY] by using a 

population vector calculated from CA (� in Figure 5.1A): 

 

 CATdYdX ∗= ˆ],[         [Equation 5.1] 

 

where T̂  is a transformation matrix that transformed CAs in the four quadrants into 

desired movements toward the center with average 1 unit moving distance, as described 

below.  

 In the beginning of each experiment, CPSQ1 was continuously delivered every 5 

seconds with RBS in between. If the animat reached the outer circle, it was moved back 

to the inner circle, and CPSQ2 was delivered, then CPSQ3 and CPSQ4. The whole process 

was repeated 5 times, and the average CAs from probe responses to each CPS were 

calculated (shown as CAQ1- CAQ4 in Figure 5.1B). The average CAs represent the 

average movements from each CPS. The transformations T̂  for each CPS were created 

so that the average movement in each quadrant would be the desired movement (MQ1- 

MQ4; pointing to the center of the inner circle) with a magnitude of 1 unit (see Figure 

5.1B). For example, for CAQ1= [CAQ1,X, CAQ1,Y] and the desired movement 
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MQ1= ]2,2[ −− , the transformation 1
ˆ
QT consisted of two scaling numbers αQ1, and βQ1 

that satisfied:  

 

 1,11,1111 ],[ˆ
QYQQXQQQQ MCACACAT =⋅⋅=∗ βα    [Equation 5.2] 

 

 Thus, for a CPSQ1 delivered with no neural plasticity, the animat will move on 

average at a -135° angle by 1 unit distance. For each experiment, the transformations 

( 1
ˆ
QT - 4

ˆ
QT ) were calculated first, and then fixed for the duration of the experiment.  

5.2.1.3.4 Training feedback 

 If the animat’s performance was desirable (moving inward), then RBS was 

delivered for 5 seconds until the next sensory input was evaluated (� to � in Figure 

5.1A). If the animat’s performance was not desired (moving outward), then training was 

applied (� in Figure 5.1A): a PTS was randomly selected from the corresponding pool; if 

the previous CPS was CPSQ1, then the PTS was selected from PTSQ1 (� in Figure 5.1A) 

and delivered for 5 seconds (� in Figure 5.1A). If the performance of the animat was 

improved but still not desirable after the PTS (still moving outward but at a slower rate), 

then the same PTS would be used for the next training. Initially, the probability of 

choosing a PTS from a pool was identical (1/660). Every time a PTS improved the 

performance of the animat after the next probe, a copy was added into its pool. Thus the 

size of the pool increased, and the probability of this “favorable” PTS being chosen later 

was increased. In contrast, if that PTS worsened the performance of the animat (moving 

outward faster), it was removed from the pool, unless only one PTS of this specific type 

remained. 

 To summarize, if the animat was moving correctly, RBS was delivered to stabilize 

the corresponding network synaptic state. Otherwise, PTS was delivered to change the 
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network synaptic weights. Also, the probability of specific PTS patterns being chosen 

was constantly updated according to the performance of the animat. 

5.2.1.4 Simulation experiments 

 We used three simulated networks with different connectivity, each with 5 

different sets of CPSs (randomly selected CPSQ1- CPSQ4). Therefore, a total of 15 

experiments with different sensory-motor mappings was performed in the three networks.  

5.2.1.4.1 Sensory mapping switch with feedback training 

 We investigated the networks’ ability to learn a user-defined goal behavior by 

“switching” the sensory mapping. This would be analogous to placing an animal into a 

different environment, or imposing a new task. As described previously, the sensory-

motor mapping was set up so that the animat would move toward the center as desired. 

We quantified the animat’s ability to adapt to a switch of the sensory mapping, that is, the 

ability to restore desired behavior under a different sensory mapping. 

 The transformation, T̂ , allowed the animat to move correctly, on average, and 

after 10 minutes the sensory mapping was switched by exchanging CPSQ1 and CPSQ3 

while CPSQ2 and CPSQ4 remained unchanged. That is, if the animat was at Q1, CPSQ3 

was delivered instead of CPSQ1, and vice versa. The simulation was stopped when either 

the simulation time exceeded 4 hours without reaching the goal or the animat stayed 

within the inner circle 90% of the time (reached the goal) for 10 minutes. If the animat 

was able to adapt to the new sensory mapping and learn the desired behavior, the network 

was considered successfully rewired. 

5.2.1.4.2 @on-contingent training 

 In order to verify the importance of behavior-based training feedback on the 

performance of the animat, we recorded the whole training stimulation sequence (PTS 

and RBS) for each successfully adapted experiment and replayed it into the same network 
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with the same initial state and with the same sensory-motor mapping. In the replayed-

training simulation, a different random seed for fluctuations in neurons’ membrane 

potentials and synaptic currents was used. Thus, responses to CPSs in the replayed-

training simulation were not identical to those in the original successful learning 

simulation, and hence the trajectory of the animat rapidly diverged from that of the 

original simulation. The replayed training stimulation was delivered open-loop, that is, 

regardless of whether the movement was desired or not. Therefore, the training 

stimulation soon became no longer contingent on the network activity.  

5.2.1.5 Analyses 

5.2.1.5.1 Mutual information 

 We used mutual information between stimuli and responses to quantify the 

stability of the input-output function of the network; that is, the stability of the animat’s 

movement under the same sensory input. Mutual information measures the reduction in 

uncertainty about the stimulus after a response is observed. We used CPSs for the sensory 

input and the animat’s movement angles for the output. The animat’s movement angles (-

180°- 180°) and sensory inputs (1, 2, 3, or 4 for Q1, Q2, Q3, or Q4, respectively) were 

recorded and the mutual information was calculated in 5-min moving time windows with 

a time step of 5 seconds using the histogram-based mutual information methods 

(Moddemeijer, 1989). 

5.2.2 Experiments on living networks 

5.2.2.1 Cell culture and experimental setups 

 We have developed techniques to maintain neuronal cultures and conduct 

experiments for many months (Potter and DeMarse, 2001). The details are described in 

Appendix C.  
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5.2.2.2 Experimental protocol 

 We tested whether a living network could learn to control movement of an animat 

in a desired direction under just one sensory input. That is, we only delivered one CPS, 

and investigated whether a single pre-defined desired moving direction could be learned, 

and if so, whether the animat could adapt to switched desired moving directions (see 

Section 5.4). Prior to the closed-loop experiment, RBS was applied in an open-loop 

manner for 2 hours to acclimate the culture to being stimulated. The transformation, T̂ , 

was calculated from CAs collected during the last 30 minutes of this acclimatization 

period. However, spontaneous activity during a no-stimulation period between finding 

the transformation and beginning the closed-loop experiment caused CA to drift, creating 

a movement bias. The bias was calculated at the beginning of the experiment and 

subtracted from the original trajectory and distributions of movement angles. 

5.3 Results 

 In order to investigate how external training stimuli can shape a network into a 

desired state, we used the biologically-inspired simulated network of Chapter 2 to study 

multi-task goal-directed behavior by embodying the network with an animat. We then 

validated (explored) some aspects of our closed-loop system in a living network. All 

acronyms are shown on pages xvii- xix. 

5.3.1 Random background stimulation (RBS) helped maintain the network input-

output function 

 In Chapter 4, we showed that RBS helped stabilize network synaptic weights after 

stimulus-induced plasticity in a simulated network (Chao et al., 2005). Here we further 

verified how this effect on network synaptic weights affected the stability of the network 

input-output function, that is, the stability of the animat’s movement under the same 

sensory input. The animat was run with RBS between CPSs without training (no PTS) for 
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one hour. We compared this to the animat’s performance without RBS (CPSs only). The 

initial network state, the random seed for fluctuations in neurons’ membrane potentials 

and synaptic currents, and the sensory-motor mapping were not varied. 

 An example of the time course of the animat’s distance from the origin is shown 

in Figure 5.2A. In this example, the animat moved in desired directions in each quadrant 

and thus stayed within the inner circle for the entire hour when RBS was applied, 

whereas it moved outward after 10 minutes when no RBS was applied. The animat was 

commanded to move every 5 seconds, and in order to stay within the inner circle, 

movement needed to remain towards the desired directions in each quadrant. The mutual 

information between the movement angle and the sensory input is shown in Figure 5.2B. 

When the animat started moving outward in an undesired direction, the mutual 

information decreased significantly. 

 The mutual information during the last 10 minutes (P2 period in Figure 5.2B) was 

compared to the mutual information during the first 10 minutes (P1) in the 15 simulations 

(3 networks, 5 different selections of CPSs each) (Figure 5.2C). With RBS, the mutual 

information in P2 was 1.42 ± 0.15 bits (mean ± SEM, n= 1800 measures, 15 networks, 

120 measures in 10 minutes per network), which was comparable to 1.53 ± 0.09 bits in 

P1 (p-value= 0.77, Wilcoxon signed-rank test). Without RBS, the mutual information in 

P2 was 0.14 ± 0.10 bits, which was significantly lower than 1.40 ± 0.24 bits in P1 (p-

value< 1e-4). This indicates that RBS of aggregated frequency of 3 Hz maintained the 

stability of the network input-output function, validating the use of RBS to maintain 

desired behavior in the animat. 

 The results also suggested the CPSs did not affect the animat’s behavior. In 15 

experiments, the stability of the network input-output function was not altered by 

different sequences of CPSs delivered. Every stimulus that evoked responses induced 

plasticity more or less; however, the results indicate that repetitive CPSs alone were 

unable to induce enough plasticity to systematically alter the animat’s behavior. 



www.manaraa.com

 107 

 

Figure 5.2. RBS stabilized the network input-output function: A. An example of the time course 
of the distance between the animat and the origin. The animat stayed within the desired area (the inner 

circle of 5 units radius) for more than 95% of an hour when RBS was applied. When no RBS was applied, 

the animat moved outward after 10 minutes. When the animat reached the outer circle of 50 units radius, it 

was put back to a random location within the inner circle, which is shown as vertical downward lines. B. 

The mutual information between the movement angle and the sensory input. When no RBS was applied, 

the mutual information decreased significantly when the animat started moving outward. C. Comparison 

between the mutual information during the last 10 minutes (light gray, P2 period shown in B) and that 

during the first 10 minutes (dark gray, P1) for the 15 simulations (3 networks, 5 different selections of 

CPSs each). With RBS, the mutual information in P2 was comparable to that in P1 (p-value= 0.77). 

Without RBS, the mutual information in P2 was significantly lower than that in P1 (p-value< 1e-4, shown 

as an asterisk). 
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5.3.2 Adaptation to switching of the sensory mapping 

 We investigated the networks’ ability to learn a user-defined goal behavior by 

“switching” the sensory mapping. Initially, the sensory-motor mapping was set up so that 

the animat exhibited the desired behavior. This sensory mapping was later switched, so 

that the desired behavior was no longer displayed. Learning was then quantified by the 

animat’s ability to adapt and to restore desired behavior under a different, fixed sensory 

mapping. 

 Ten simulations, out of 15, showed successful adaptation to the switch, and the 

average time for the adaptation was 88.6 ± 12.2 minutes (n= 10 simulations). One 

successful simulation is shown in Figure 5.3A, and all 15 simulations are shown in Figure 

5.4. Immediately after the switch, as expected the animat moved outward in Q1 and Q3. 

Training feedback began to shape the network synaptic weights, and the desired behavior 

was restored. An unsuccessful simulation is shown in Figure 5.3B. In 5 unsuccessful 

simulations, explained in the Section 5.4, the animat kept moving outward and was 

repeatedly put back into the inner circle after reaching the outer circle. The training 

feedback was unable to restore the desired behavior throughout 4 hours in simulation. In 

Figure 5.3B, only the first 90 minutes are shown for clarity. 

 Additional aspects of another successful learning example are shown in Figure 5.5. 

The corresponding learning curve is shown in Figure 5.5C. Immediately after the switch, 

the probability of successful behavior dropped, but generally kept increasing afterward 

due to the training. Among all successful-learning simulations, the average probability of 

successful behavior before the switch was 63.3 ± 3.5% (n= 10 simulations), dropped 

significantly to 9.8 ± 1.1% after the switch (p-value< 5e-4, Wilcoxon signed-rank test), 

and increased significantly back to 53.6 ± 3.5% after 88.6 ± 21.9 minutes when the 

desired behavior was restored (p-value< 5e-4) (Figure 5.5D). The probability of learning 

successful behavior after the switch was comparable to that before the switch (p-value= 
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0.09). The training history from the same example is shown in Figure 5.5E, which 

showed that not just one PTS, but a certain sequence of PTSs was needed in order to 

restore the desired behavior. 

 

 

Figure 5.3. Adaptation to a new sensory mapping: The animat’s learning ability was quantified by 
its ability to restore desired behavior after a sensory mapping switch. A. An example of successful learning. 

The distance between the animat and the origin is shown in the left panel. The animat maintained the 

desired behavior before the sensory mapping switch between quadrants Q1 and Q3 at 10 minutes into the 

simulation. Immediately after the switch, the animat started moving outward (the trajectory is shown in the 

right panel). Eventually, the animat adapted to the switch and restored the desired behavior to stay within 

the inner circle. Ten simulations (out of 15) showed successful adaptation to the switch. B. An example of 

unsuccessful learning. The animat kept moving outward and was repeatedly returned to the inner circle 

after reaching the outer circle. The training feedback was unable to restore the desired behavior throughout 

4 hours of experiment. Only the first 90 minutes are shown for clarity. One-third of the simulations showed 

unsuccessful learning. 
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Figure 5.4. Successful and failed adaptation to a new sensory mapping: The distances between 
the animat and the origin in all 15 simulations are shown. The animat maintained the desired behavior 

before the sensory mapping switch (red triangle) between quadrants Q1 and Q3 at 10 minutes into the 

simulation (green bar). Immediately after the switch, the animat started moving outward. In 10 simulations, 

the animat adapted to the switch and restored the desired behavior to stay within the inner circle (orange 

bar). For other 5 unsuccessful learning, the animat kept moving outward and was repeatedly returned to the 

inner circle after reaching the outer circle. The training feedback was unable to restore the desired behavior 

throughout 4 hours of experiment (only the first 3 hours are shown for clarity). Type I and Type II failures 

are indicated (see Section 5.4.1). 

 



www.manaraa.com

 111 

 

Figure 5.5. A successful adaptation required not only one PTS but a certain sequence of 

PTSs: A. Desired moving directions in the switched quadrants were restored by training. Average moving 
directions in each quadrant (shown as arrows) were measured in three 10-min periods (horizontal bars). 

The average moving directions in the switched quadrants immediately after the switch are shown in red. B. 

The distance between the animat and the origin. C. The corresponding learning curve, defined as the 

change in probability of successful behavior over time. The frequency of the desired behavior was 

measured during 2-min moving time windows with a time step of 5 seconds. Immediately after the switch, 

the probability of successful behavior dropped, but generally increased afterward due to the training. D. 

The average probabilities of successful behavior in three different periods in 10 successful learning 

experiments. These periods are shown in C (Pre: the 10 minutes before the switch; Switch: the 10 minutes 

immediately after the switch; and Post: the last 10 minutes). The average probability of successful behavior 

dropped significantly after the switch (p-value< 5e-4), and increased significantly back after the desired 

behavior was restored (p-value< 5e-4). The probability of successful behavior learned after the switch (Post) 

was comparable to that before the switch (Pre) (p-value= 0.09). E. The corresponding training stimuli. 

PTSs delivered from four different pools (PTSQ1- PTSQ4) are shown as black crosses, and the occurrences 

of RBS are shown as green crosses. From the 660 possible PTSs, the index of PTSs delivered most 

frequently in Q1, Q2, Q3, and Q4 were 575, 605, 423, and 584, respectively. The electrode locations and 

PTS∆t of these four PTSs are shown on the right. For each pool, the location of the first electrode (PTS-E1, 

also the probe electrode, see Section 5.2 and Figure 5.1) is shown as a black X in the grids of 60 electrodes, 

and the second electrode (PTS-E2k) is shown as a blue dot. PTS∆t between the PTS-E1 (black arrow) and 

PTS-E2k (blue arrow) is also indicated for these four PTSs. 
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5.3.3 Training feedback contingent on behavior was required for successful learning 

 In order to investigate the importance of the training feedback for successful 

learning, we recorded the whole training stimulation sequence (PTS and RBS) for each 

successfully adapted case and replayed it into the same network with the same initial state 

and same sensory-motor mapping. Different random seeds for fluctuations in neurons’ 

membrane potentials and synaptic currents (see Section 2.2.2.2) were used between the 

successful learning simulations and the replayed training simulations. This difference 

would lead to different network responses, and thus different movement trajectories and 

different CPS sequences. However, the effect of CPSs on shaping the network was 

insignificant, as shown in Figure 5.2. Therefore, whether the network could adapt to the 

new sensory mapping solely depended on the effect of training stimulation. The replayed 

training stimulation was no longer contingent on whether or not desired movement 

occurred. In ten stimulation-replay experiments, the animat was unable to show 

successful adaptation with replayed training stimulation (shown as “non-contingent” in 

Figure 5.6) that had been successful with behavior-contingent training feedback (shown 

as “contingent”). 
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Figure 5.6. Behavior-contingent training feedback was necessary for successful learning: A 
comparison between experiments with behavior-contingent training feedback and with replayed training 

stimulation (non-contingent). A. With real-time behavior-contingent training feedback, the animat was able 

to adapt to a sensory mapping switch and reach the desired behavior: moving in desired directions in each 

quadrant and staying within the inner circle. B. The adaptation was absent in the non-contingent experiment. 

C. The comparison of the learning curves (black, grey). D. The average probabilities of successful behavior 

in the 10 successful learning experiments and the corresponding non-contingent experiments. With 

behavior-contingent training feedback, the average probability of successful behavior in the last 10 minutes 

of the simulations (Post period shown in C) was significantly greater than that measured within 10 minutes 

after the switch (Switch period in C) (p-value< 5e-4). In non-contingent experiments, the average 

probability of successful behavior in Post was comparable to that in Switch (p-value= 0.47). E. The 

changes in all synaptic weights were visualized by Principal components analysis (PCA). The first three 

components (PC1 to PC3) of the network synaptic weights in the same example are plotted over time. 

Starting from the same initial synaptic weights, the network diverged to different synaptic weight 

distributions as the training became progressively less contingent on the network activity and the animat’s 

performance. The circled periods, Pre and Post, are indicated at the top of A. 
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 A comparison of the learning curves is shown in Figure 5.6C. With contingent 

training feedback, the average probability of successful behavior in the last 10 minutes of 

the simulations was 53.6 ± 3.5% (n= 10 successful learning simulations), which was 

significantly greater than 9.8 ± 1.1% measured within 10 minutes after the switch (p-

value< 5e-4). With replayed training stimulation, the average probability of successful 

behavior in the last 10 minutes of the simulations was 11.6 ± 2.2%, which is comparable 

to 9.2 ± 1.8% measured within 10 minutes after the switch (p-value= 0.47) (see Figure 

5.6D).  

 In order to understand how successful and replayed training stimulation shaped 

the network differently, we visualized the changes in weights of all synapses by using 

principal components analysis (PCA). The first three components (PC1 to PC3) of the 

network synaptic weights for contingent training simulation (Figure 5.6A) and non-

contingent training simulation (Figure 5.6B) are plotted over time (Figure 5.6E).  

Starting from the same initial synaptic weights, the network diverged to different synaptic 

weights distributions as the training became progressively less contingent on the network 

activity and the animat’s performance. 

5.3.4 The “solution” is not unique 

 After the network adapted to a switching of the sensory mapping, the original 

sensory mapping was returned to see whether the network could re-adapt to the original 

mapping (Figure 5.7). After the switch-back, the behavior-contingent training feedback 

was able to restore the desired behavior under the original sensory mapping (Figure 5.7A), 

but with a different set of network synaptic weights (Figure 5.7B). This indicates that 

multiple synaptic configurations, or “solutions”, existed for the desired behavior.  
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Figure 5.7. The “solution” is not unique: The network re-adapted to reapplication of the original 
sensory mapping via different state of network synaptic weights. A. After the network adapted to a switch 

of the sensory mapping (Post1 period), the sensory mapping was switched back to see whether the network 

could re-adapt to the original sensory mapping. One example is shown. The animat was able to restore the 

desired behavior (Post2) after the switch-back. B. After adaptation to the switch-back, the animat showed 

the same desired behavior under the same sensory mapping, but with a different set of network synaptic 

weights. Multiple solutions existed for the desired behavior. 

 

5.4 Discussion 

 We demonstrate that an embodied simulated network, despite lacking the 

structure present in the brain, can be shaped into desirable states capable of expressing 

meaningful behavior. We applied a switching of the sensory mappings and measured the 

network’s ability to rewire itself in order to restore the desired behavior under a new 

mapping. Previous studies have shown that functional visual projections routed into non-

visual structures can change the modality of the cortex (Sur et al., 1988; Sharma et al., 

2000). This rewiring process was also found to restore function in the olfactory bulb 

following injury or neurological disease (Costanzo, 2000). Successful rewiring observed 

in the random network suggests that cultured networks could be a useful model to 

investigate functional reorganization in cortical circuits after deafferentation or changes 

in sensory contingencies. 
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 We exploited structured stimuli and detailed activity metrics (Chapter 3) (Chao et 

al., 2007c) incorporating spatial information to show that with training contingent on the 

animat’s behavior, the network was capable of associating multiple sensory inputs to the 

desired motor outputs. Figure 5.5 shows that a successful adaptation required not only 

one PTS but a certain sequence of PTSs. This indicates that for training feedback to lead 

to the “solution”, the interaction between training stimulation and ongoing changes in the 

network were important. This could be achieved only through real-time feedback (Figure 

5.6). We also found that the learned solution for a desired behavior was not unique 

(Figure 5.7) and could be achieved through different paths of training. These results shed 

light on the complexity and flexibility of the learning process in neural networks.   

5.4.1 Hypotheses for unsuccessful learning 

 One-third of the simulations showed unsuccessful learning but were nevertheless 

informative (see Figure 5.4). Two typical behaviors were observed in these five 

unsuccessful experiments: 

5.4.1.1 Type I failure 

 The animat showed no sign of improving behavior in the quadrant(s) where the 

switch of the sensory mapping was performed (Q1 and/or Q3) (see Trajectory in Figure 

5.8A). In those cases, CPSQ1 and/or CPSQ3 evoked activity in neurons localized mainly at 

one quadrant of the network. We hypothesized that this localization reduced or 

eliminated the ability of the responses to shift the movement toward a different direction. 

Compared to more spatially homogeneous or symmetric responses, a localized response 

results in a larger magnitude in CA (see Equation 5.1 in Section 5.2). The maximum of 

CAQ1 and CAQ3 (average CAs to CPSQ1 and CPSQ3), Max(CAQ1, CAQ3), quantified the 

level of localization in responses to CPSQ1 and CPSQ3. This measure indicates the change 

needed for the directions of CAs to CPSQ1 and CPSQ3 to be “reversed”.   
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5.4.1.2 Type II failure 

 The animat showed signs of improving by changing moving direction(s) in the 

quadrant(s) where the switch was performed (Q1 and/or Q3). However, the movement 

direction in an un-switched quadrant (Q2 and/or Q4) became undesired (Figure 5.8B). In 

those cases, neurons activated by different CPSs had large degrees of overlap. We 

hypothesized that the training stimuli caused correlated changes in multiple CPSs. The 

degrees of overlap between the responses of different pairs of CPSs quantified this effect. 

Assume that @Q1 is the set of neurons activated by CPSQ1, and @Q2 is the set of neurons 

activated by CPSQ2. Then the degree of overlap between responses to CPSQ1 and CPSQ2 

was defined as: 

 

 %100),(
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Q

QQ

QQ
@

@@
CPSCPSOverlap

I
   [Equation 5.3] 

 

where ⋅  represents the number of elements in the set. This value indicates the proportion 

of neurons activated by CPSQ1 that were also activated by CPSQ2, which quantifies how 

much the training in Q1 (a switched quadrant) might affect the behavior in Q2 (un-

switched). The maximum of all possible overlaps between a switched quadrant and an 

un-switched quadrant was found:  

 

Max overlap= max{Overlap(CPSQ1, CPSQ2),  

Overlap(CPSQ1, CPSQ4),  

Overlap(CPSQ3, CPSQ2),  

Overlap(CPSQ3, CPSQ4)}   [Equation 5.4] 
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 Max overlap is plotted versus Max(CAQ1, CAQ3) in Figure 5.8C, which shows that 

smaller overlap, smaller CAQ1 and smaller CAQ3 were found in all 10 successful learning 

experiments. Also, as hypothesized, Type I failure showed large Max(CAQ1, CAQ3) and 

Type II failure showed large Max overlap. 
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Figure 5.8. Hypotheses about the reasons for failed learning: One-third of the experiments 
showed unsuccessful learning. Two types of learning failures were found, and examples are shown. A. 

Type I failure: the animat showed no sign of improving behavior in the quadrant(s) where the switch of the 

sensory mapping was performed (Q1 and/or Q3). Using the trajectory in Q1 as an example, the animat kept 

going outward without turning (indicated as a hollow red arrow). In those cases, CPSQ1 and/or CPSQ3 

evoked activity in neurons localized mainly at one quadrant of the network. The localization of neurons 

activated by CPSQ1 is illustrated in the cartoon. We hypothesize that this localization reduced or eliminated 

the ability of the responses to shift the CA from the original direction (shown as a solid red arrow) toward 

the desired direction (shown as a black arrow). B. Type II failure: the animat showed signs of improving by 

changing movement direction(s) in the quadrant(s) where the switch was performed (Q1 and/or Q3). 

However, the original desired movement direction(s) in the un-switched quadrant(s) (Q2 and/or Q4) 

was/were changed into undesired ones(s). Using the trajectory in Q3 and Q4 as an example, the animat was 

able to turn in Q3 (shown as a hollow black arrow) but the desired direction in Q4 was later altered (shown 

as a hollow red arrow). In those cases, neurons activated by different CPSs had large degrees of overlap. 

The neurons activated both by CPSQ3, CPSQ4, and both are illustrated in the cartoon. We hypothesize that 

the training stimuli in Q3 caused correlated changes in the overlapped neurons (shown as red dots), which 

caused undesired change in responses to CPSQ4. C. The degree of overlap (quantified by Max overlap, see 

Section 5.4) is plotted versus the degree of localization (quantified by Max(CAQ1, CAQ3)), which shows that 

smaller overlap, smaller CAQ1 and smaller CAQ3 were found in all 10 successful cases. Also, Type I failure 

showed large Max(CAQ1, CAQ3) and Type II failure showed large Max overlap. 
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 Therefore, in order to obtain successful learning, the stimulation used to encode 

sensory inputs should evoke neither overly localized nor largely overlapped responses. 

Localization reduced the possibility to improve moving directions in switched quadrants, 

and overlap caused unwanted changes in un-switched quadrants. These results suggest a 

certain level of independence is required between responses to stimulation used to encode 

different sensory inputs, which could be achieved by using smaller and distinct recording 

areas to determine movement, or by offsetting the CA through the motor mapping 

transformation so that the probability of a CA to point in different directions is more 

uniform. Furthermore, correlated changes in responses to different sensory inputs could 

also be avoided by using training stimulation that only causes localized plastic changes. 

These findings could instruct the designs of implant electrodes and feedback stimulation 

in prosthetics to achieve a more efficient and effective adaptation. 

 In order to further verify the hypotheses, we calculated the Max(CAQ1, CAQ3) and 

Max overlap for additional 85 randomly-generated sets of CPSs from the 3 simulated 

networks. The Max(CAQ1, CAQ3) and Max overlap of these 85 sets and the 15 sets used 

previously, a total of 100 sets, are shown in Figure 5.9A. A cluster with small Max(CAQ1, 

CAQ3) (< 150) and small Max overlap (< 50%) was observed (the shaded area in Figure 

5.9A). Therefore, we hypothesized that Type I and Type II learning failures could be 

avoided by selecting CPSs within this cluster: 

1. Type I failure can be prevented by choosing CPSQ1 and CPSQ3 that each evoke 

responses which are not too localized, (criterion: Max(CAQ1, CAQ3)< 150). 

2. Type II failure can be prevented by choosing CPSs that evoke responses without too 

much overlap, (criterion: Max overlap< 50%). 

 

 Sixty-four, out of 100, sets of CPSs satisfied the criteria of Max(CAQ1, CAQ3)< 

150 and Max overlap< 50%. By using 10 randomly-selected sets of CPSs that satisfied 

the criteria, we found that successful learning could be achieved (Figure 5.9B). The 
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success rate was improved from 66.7% (from the 15 original simulations, see Figure 5.4) 

to 100% (from the 10 new simulations, Figure 5.9B). The chance that randomly selecting 

10 CPSs that all satisfy the criteria from the 100 randomly-generated sets is less than 0.01 

( 100

10

64

10 /CC = 0.0088). This supports the hypotheses and indicates that a higher success rate 

of adaptations can be achieved by selecting CPSs with smaller Max(CAQ1, CAQ3) and 

smaller Max overlap. The average time for the adaptation in these additional simulations 

was 71.8 ± 10.7 minutes (n= 10 simulations), which was comparable to 88.6 ± 12.2 

minutes in the 10 successful learning simulations shown previously (p-value= 0.43, 

Wilcoxon rank sum test). Furthermore, 64 out of 100 random selections of CPSs (64%) 

satisfied the criteria (see Figure 5.9A), which was comparable to the success rate (66.7%) 

from the previous 15 simulations with CPSs selected randomly without the criteria.  
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Figure 5.9. Improve learning by selecting CPSs based on the hypotheses: Successful 
adaptations can be achieved by selecting CPSs with small Max(CAQ1, CAQ3) and small Max overlap. A. 

Max(CAQ1, CAQ3) and Max overlap from 100 randomly-selected sets of CPSs in the three simulated 

networks. The 15 sets of CPSs used in the previous simulations are indicated as dots and crosses with black 

outlines. Among the 100 sets, 64 sets satisfied the criteria of Max(CAQ1, CAQ3)< 150 and Max overlap< 

50% (red dots). B. Successful learning was achieved by using 10 randomly-selected sets of CPSs that 

satisfied the criteria (the selections are indicated as black dots in A). The success rate was improved from 

66.7% (10/15, see Figure 5.4) to 100% (10/10). The same representations are used as in Figure 5.4. 
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5.4.2 Successful adaptive goal-directed behavior in a living cultured network with 

one sensory-motor mapping 

 In order to find out whether the learning ability found in the simulated network 

can also be found in living cultured networks, we tested our closed-loop algorithm in a 

cortical network cultured over an MEA. The simulated network showed that the animat 

was able to learn to move toward a user-defined area. In order to achieve this, the animat 

had to change its movement direction from 45 ± 45° (immediately after the switch) to -

135 ± 45° in Q1, and from -135 ± 45° to 45 ± 45° in Q3, while maintaining the desired 

movement directions in Q2 and Q4. To simplify the goal for living networks and avoid 

Type II failure, we tested whether a living network could learn to control movement of an 

animat in a desired direction under just one sensory input. That is, we only delivered one 

CPS, and investigated whether a single pre-defined desired moving direction could be 

learned, and if so, whether the animat could adapt to the switching of desired moving 

directions. Inspired by the learning failures in the simulation results (see above), we 

removed any directional bias through the motor mapping transformation. Thus, a CA had 

a uniform probability to point in all directions, and Type I failure could be avoided. An 

example of a series of successful adaptations in a living network is shown in Figure 5.10. 
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Figure 5.10. Adaptive goal-directed behavior in a living MEA culture: We tested the proposed 

closed-loop algorithm in a cortical network grown over an MEA with a simplified goal: moving in desired 

directions under just one sensory input. Furthermore, we tested whether the animat could adapt if we 

switched the desired movement direction after adapting to a previous one. Inspired by the learning failures 

in the simulation results (see Section 5.4), we used the motor mapping transformation to remove any 

directional bias. Thus, a CA had uniform probability to point in all directions, and Type I failure could be 

avoided. A. The trajectory (center column) and the distribution of movement angles (right column) 

demonstrated that the animat learned to move in the desired direction (left column). A desired angle of 0° 

was first applied for 2 hours and switched to 90° and then -45°, each for 2 hours (blue to red in time). 

Successful behavior was considered to be movement within the desired angle ± 30° (right column, black 

arcs). The probability distribution of movement angles during the last 10 minutes of a 2-hr period was 

found to match the pre-defined desired angles, which indicated that the animat was able to adapt to the 

switch of desired angle. B. The learning curve across the switch from desired angle of 90° to -45°. An 

animat moving randomly would give a 16.67% chance that the movement was within the ± 30° range of the 

desired angle (60°/360°), which is indicated as a horizontal line. The same presentation is used as in Figure 

5.5C. C. The corresponding training stimuli. The two most frequent PTSs are indicated. The same 

presentation is used as in Figure 5.5E. For clarity, each RBS was colored based on its occurrence frequency 

(low to high: yellow to green). Similar to the results found in simulation, not only one PTS, but a complex 

sequence of PTSs was needed in order to achieve the desired behavior. 

 

 We switched between 3 desired angles every 2 hours, and successful learning was 

judged by network’s ability to control an animat to move to new desired angles. We 

found that after training, the animat was able to move toward the pre-defined desired 

angles, and the distribution of movement angles converged to the desired angle. The 

living cultured network was able to show adaptive goal-directed behavior with one 

sensory-motor mapping. Our future work is to study whether multiple sensory-motor 
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mappings also can be learned simultaneously in living cultured networks, allowing them 

to control more complex animat behaviors.  

5.4.3 Effects of random background stimulation (RBS) in simulated and living 

cortical networks 

 RBS was hypothesized to negate “attractors” in network synaptic weight 

distributions caused by spontaneous activity (mainly network-wide synchronized bursts 

of activity), and to prevent network synaptic weights from drifting to such attractors after 

inducing plasticity with electrical stimulation (Chao et al., 2005) (also see Chapter 4). 

RBS with an aggregated frequency of 1 Hz reduced the occurrence of spontaneous bursts 

by at least 10 times in the simulated network and dissociated cortical cultures (Chao et al., 

2005). By reducing the occurrence of spontaneous bursts, the network synaptic weights 

were mainly affected by activity evoked by RBS. Since RBS was random spatially and 

temporally, the evoked activity had an unbiased randomizing effect on changing network 

synaptic weights. In a different approach, a burst-control stimulation protocol consisting 

of a group of electrodes cyclically stimulated with an aggregated frequency of 50 Hz was 

found to completely eliminate spontaneous bursts (Wagenaar et al., 2005). Similar to 

RBS, the burst-control stimulation stabilized tetanus-induced plasticity in dissociated 

cortical cultures (Madhavan et al., 2007c). However, different mechanisms might be 

involved. RBS evoked network-wide responses with unbiased spatiotemporal structure, 

while the burst-control stimulation desynchronized spontaneous activity into spatially-

localized and temporally-dispersed responses. 

 In this study, the aggregated stimulation frequency of RBS was increased from 1 

to 3 Hz so that the amount of stimulation in RBS and PTS were comparable. RBS did 

stabilize network synaptic weights (the network synaptic weights were clustered in Pre 

period in Figure 5.6E) and also stabilized the network input-output function (see Figure 

5.2).  
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5.5 Conclusion 

 The simulated network was used to explore many different possible sensory-

motor mappings and training algorithms (not described here) because of savings in 

preparation time and an ability to monitor all synaptic weights. The described algorithm 

successfully demonstrated adaptive goal-directed behavior with multiple sensory-motor 

mappings. This closed-loop algorithm is not restricted to a particular type or a particular 

number of sensory-motor mappings. Studying a living neuronal network’s basic 

computational properties, such as parallel signal processing and learning, by working 

with in vitro networks could lead to direct development of more advanced artificial 

neural networks, more robust computing methods, and even the use of neurally-

controlled animats themselves as biologically-based control systems. 
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CHAPTER 6 

CLOSI
G THE LOOP: ADAPTIVE GOAL-DIRECTED BEHAVIOR 

WITH LIVI
G CORTICAL 
ETWORKS
 xii
 

 

 The closed-loop algorithm described in Chapter 5 successfully showed adaptive goal-directed 

behavior with multiple sensory-motor mappings in embodied simulated networks. In order to obtain more 

consistent and faster learning, we modified the designs of patterned training stimulation (PTS) and random 

background stimulation (RBS), and implemented a better training algorithm. By using the modified closed-

loop design, we demonstrated the capability of living cultures to learn to modulate their dynamics and 

achieve pre-determined activity states within tens of minutes through training. A priori knowledge of 

functional connectivity was not necessary. Instead, effective training sequences were continuously 

discovered and refined based on real-time feedback based on performance. We found that the short-term 

dynamics in response to training became engraved in the network, requiring fewer training stimuli later in 

time to achieve the same results. After 2 hours of training, plasticity was significantly greater than baseline 

for 80 minutes (p-value< 0.01). Interestingly, a given sequence of stimuli did not induce plasticity, let alone 

desired activity, when replayed to the network and no longer contingent on behavioral performance. Our 

results encourage an in vivo investigation of how targeted electrical stimulation of the brain, contingent on 

the activity of the body or even of the brain itself, could treat neurological movement disorders by re-

linking neuronal activity to a goal movement.  

6.1 Introduction 

 A life’s experiences spur the brain to continuously rewire itself to best achieve 

behavioral goals. However, errors can occur when injury or a pathological condition 

causes aberrant neural activity, and often a disconnection arises between the activity of 

the brain and that of the body. Treating movement disorders using physical therapy has 

been shown to modify neural activity, and a range of studies have shown electrically 

stimulated neuronal tissue exhibits neuronal plasticity (see below). Thus theoretically, 

electrically-induced plasticity could allow the brain to be rewired to achieve a more 

desired behavioral state. Here in a preliminary experiment, we investigated how a 

neocortical network could learn to modulate its dynamics and achieve user-defined 

                                                 

 

 
xii
 To be submitted as: Zenas C. Chao, Douglas J. Bakkum, and Steve M. Potter (2007): Feedback training 

of electrical stimuli in a cortical network: learning and neurorehabilitation. The first two authors 

contributed equally. 
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activity states through the feedback training with electrical stimuli. Besides elucidating 

potential therapeutic roles for artificial stimulation of the brain, these experiments give 

insight into how the processes underlying learning and memory are expressed in and 

induced by network activity (Chao et al., 2007a). 

 Electrical stimulation has been extensively used to artificially induce neuronal 

plasticity and study learning and memory. For example, cellular plasticity has been 

observed in a variety of functions, including in synaptic efficacy (Bliss and Lømo, 1973; 

Bi and Poo, 1998), intrinsic neuronal excitability (Daoudal and Debanne, 2003; Zhang 

and Linden, 2003), neuronal (Uesaka et al., 2007) and glial (Fields, 2005; Ishibashi et al., 

2006a) morphology, action potential propagation (Bakkum et al., 2007), and 

neurogenesis (Kempermann, 2002). A much-needed progression in the field is 

determining how cellular plasticity scales and integrates to influence neuronal network 

dynamics. In primate motor cortex, a neuron was repetitively stimulated 5 msec after the 

occurrence of an action potential on a different neuron using an electronics implant 

(Jackson et al., 2006); after halting the stimulation, subsequent activity of the recorded 

neuron caused an increase in the firing rates in the vicinity of the stimulated neuron. This 

“pathway-specific” plasticity (Jimbo et al., 1999) and also a “region-specific” variation in 

the flow of neuronal activity (Chao et al., 2007c) have been observed in our cultured 

networks. Thus electrical stimulation can sculpt the flow of neuronal information through 

a variety of mechanisms, and holds promise for either retraining or bypassing 

malfunctioning neuronal circuits. 

 Therapeutic techniques used to treat neurological disorders create links between 

neuronal activity and behavior via the use of directed attention or perceptible feedback 

signals, and a lot of practice. Physical therapy, including treadmill training and robotic-

assisted or neuromuscular (functional) electrical stimulation (NMES / FES) -induced 

limb movement, has been used to combine natural motion with proprioceptive feedback 

(Dobkin et al., 2004; Sheffler and Chae, 2007). The feedback activates motor circuits, 
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improving the control of paretic limbs. Further incorporating visual and aural cues, such 

as targets for foot steps or beats to maintain walking gaits, and also mental imagery of 

movement have been used to improve training by priming motor circuits in a top-down 

(cortical origin) manner (Morrison et al., 2000). Biofeedback therapy uses visual, aural, 

or tactile displays to improve performance by making underlying physiological or 

cognitive processes perceptible (Huang et al., 2006). These examples all re-link neuronal 

activity to a movement, and moreover, physical therapies have led to cortical plasticity: 

improved hand movements after constraint-induced movement therapy was accompanied 

by an increased representational area in the motor cortex, observed by transcranial 

magnetic stimulation (Liepert et al., 2000) and fMRI (Johansen-Berg et al., 2002). 

However, while helpful; (1) benefits from these techniques are not guaranteed among 

different individuals or different disorders; (2) optimal therapeutic protocols have not 

been established; and (3) the relationship with neuronal plasticity is unclear (Dobkin et al., 

2004; Huang et al., 2006). Adaptive electrical stimulation may improve therapeutic 

results by directly treating the abnormal neuronal circuits and related pathways 

themselves. 

 Additionally, electrical stimulation inside the brain has successfully managed 

pathological symptoms, but without re-linking neural activity and behavior (more of a 

treatment rather than rehabilitation). Deep brain stimulation (DBS) has been used to treat 

severe cases of essential tremor, dystonia, Parkinson’s disease, Tourette syndrome, 

clinical depression, and epilepsy (Perlmutter and Mink, 2006). However, its functional 

mechanisms are debated, and whether or not plasticity plays a key role in DBS therapy is 

unclear: effects depend on continual stimulation, which causes serious side effects 

including attentional and learning impairments (Jahanshahi et al., 2000). Other methods 

to reduce epileptic seizures have been used, including repetitive vagus nerve stimulation 

(Prater, 1998; Schachter and Saper, 1998) or electrical pulses at or near seizure foci 

applied prior to a predicted seizure onset (Martinerie et al., 1998), but their consequences 
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on neuronal plasticity are not known. Therefore, designing an adaptive algorithm to select 

appropriate training stimuli, contingent on neuronal output, could optimize the effect of a 

treatment while also avoiding extraneous side effects from excessive stimuli. 

 We hypothesize that electrical training stimuli contingent on neuronal or motor 

output could provide a therapy by taking advantage of existing neural plasticity 

mechanisms to re-link the body with the brain. Many steps are required to reach this 

ambition, including quantifying the ability and limitations of electrical stimulation to 

induce functional or adaptive changes in neural activity. Here, we developed an adaptive 

training algorithm which reshaped the activity of a neocortical network into different 

desired motor outputs within tens of minutes through the application of patterned training 

stimulation (PTS) using an extracellular multi-electrode array (MEA). A priori 

knowledge of connectivity was not necessary. Instead, effective sequences of PTSs were 

continuously discovered and refined based on real-time performance. The short-term 

dynamics in response to PTSs became engraved in the network, requiring fewer PTS 

applications later in time to achieve the same results. Interestingly, a given training 

sequence did not induce plasticity, let alone desired motor output, when it was replayed 

to the network and no longer contingent on neural activity. Reducing the amount of 

stimulation would be expected to reduce the incidence of side effects if applied in 

patients, and, with enough training, allow the removal of stimulation hardware. Results 

from our controlled in vitro model encourage an in vivo investigation of how targeted 

electrical stimulation of the brain, contingent on the activity of the body, could treat 

aberrant neural activity. 
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6.2 Methods 

6.2.1 Cell culture 

 We have developed techniques to maintain neuronal cultures and conduct 

experiments for many months (Potter and DeMarse, 2001). The details are described in 

Appendix C. 

6.2.2 Closed-loop training algorithm 

 To train a cortical network to achieve a desired motor output, a feedback loop 

from neural activity to electrical stimulation needs to be created (Figure 6.1). The closed-

loop design in this study was similar to the design described in Chapter 5 (Section 5.4.2), 

but with several modifications, which are summarized in Table 6.1 and explained in the 

following sections.  

 First, sequences of neuronal action potentials were transformed into movements. 

Understanding how such sequences encode movement and information in general is a 

subject of much scientific inquiry. Population coding is a candidate motor mapping found 

to occur in the motor cortex (Georgopoulos, 1994), premotor cortex (Caminiti et al., 

1990), hippocampus (Wilson and McNaughton, 1993b), and other cortical areas: the 

firing rates of a group of broadly tuned neurons taken together provide an accurately 

tuned representation (e.g., to a preferred direction of arm movement). We used a related 

population coding to instruct motor output, termed the center of activity (CA) (Chapter 3). 

For training, plasticity was induced by repetitive stimulation of a set of electrodes, termed 

patterned training stimulation (PTS). If the correct movement occurred, a shuffled 

background stimulation (SBS) was used instead, which balanced overall stimulation rates. 

The difference between SBS and random background stimulation (RBS), which was 

delivered after correct movement in the closed-loop design of Chapter 5, are decribed 

later in Section 6.2.3.1. 
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Table 6.1. Differences between closed-loop designs with living cultures in Chapters 5 and 6 

Modification 
Chapter 5 

(Section5.4.2) 
Chapter 6 Purpose 

Plasticity-

inducing 

stimulation 

308 patterned training 

stimulations (PTSs) with 

different electrode pairs and 

inter-pulse intervals (IPIs). 

(= 28 usable electrodes * 11 
IPIs) 

100 PTSs, each consisting 

of 6 stimuli with fixed IPIs 

of 10 msec. (Section 

6.2.3.1) 

To induced more 

pronounced plasticity 

by including more 

stimuli. 

Plasticity-

maintaining 

stimulation 

Random background 

stimulation (RBS) with 

random electrodes and 

random IPIs between 200 

and 400 msec. 

Shuffled background 

stimulation (SBS) with the 

similar spatial structure as 

the 100 PTSs but with 

randomly-shuffled temporal 

order. (Section 6.2.3.1) 

Probing 

sequence 

Context-control probing 

sequence (CPS) consisted of 

3 stimuli. 

CPS consisted of 7 stimuli. 

(Section 6.2.3.1) 

To maintain more 

comparable overall 

firing rate in probe 

responses as with 

PTS. (Section 

6.2.3.1) 

Training 

algorithm 

Adding desired PTS into the 

pool to increase its 

probability being selected 

later. 

Updating the probability of 

each PTS being selected 

based on a pre-defined 

function. (see Section 

6.2.2.2) 

To include 

“punishment” on 

undesired PTSs, 

instead of only 

rewarding the desired 

ones. 

Stimulation 

voltage 
± 500 mV ± 300 mV  

To localize evoked 

activity in order to 

obtain more control 

and higher resolution 

in stimulus-induced 

plasticity. (see 

Section 6.2.3.1) 
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Figure 6.1. Schematic of the closed-loop feedback and adaptive training: See Section 6.2 for 
details. A. � A context-control probing sequence (CPS) was repetitively delivered every 6 seconds. After 

each last stimulus in CPS, a probe, 100 msec of evoked responses was recorded to form the 2-D center of 

activity (CA) vector. � The CA was transformed ( T̂ ) into incremental movement [dX, dY]. � If 

movement was within ± 30º of the user-defined desired direction, a shuffled background stimulation (SBS) 

was delivered. Otherwise, a set of patterned training stimulation (PTS) was delivered. � CPS was 

delivered after SBS or PTS to reduce variability in the probe response from ongoing activity. B. For 

unsuccessful movement, a PTS (PTSk) was selected from a pool of 100 possibilities. The probability of 

each PTS (Pk(t)) being chosen later (Pk(t+1)) increased (blue) or decreased (red) depending on the success 

of the motor output (see Equations 6.1 and 6.2). 
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6.2.2.1 Motor mapping 

 Action potentials evoked by repetitive stimulation (1/6 Hz) of a single electrode, 

termed probe, were recorded for 100 msec following each pulse on the remaining 

electrodes of an MEA. The same probe electrode was used throughout an experiment. A 

population code, CA, mapped the activity into incremental motor output [dX, dY], 

described in Chapter 5 (Equation 5.1) (Figure 6.1A� and 6.1A�). The CA was 

normalized by a fixed transformation matrix, T̂ , to remove any directional bias arising 

from different distributions of neurons in different MEAs (Figure 6.1A�): the 

transformation centered the distribution of CAs to (0, 0) to allow movement in all 

possible directions with equal magnitudes (offsets and scalings in X and Y directions, 

respectively). This could avoid Type I learning failure, which is described in Chapter 5 

(Section 5.4.1.1). 

6.2.2.2 Training algorithm 

 For unsuccessful movement, plasticity of the probe response is desired. Paired 

stimulation of monosynaptically connected neurons evokes spike-timing dependent 

synaptic plasticity (STDP) dependent on the stimulation interval (Bi and Poo, 1998). 

Repetitive PTS, a stimulation sequence with a specific spatiotemporal structure (see 

below), applied using the extracellular electrodes of an MEA has the potential to induce 

STDP throughout any shared activation pathways. When movement was within ±30º of 

the desired direction and no training was required, SBS, which contains no specific 

temporal structure as in PTS (see below), was used instead (Figure 6.1A� and �). 

Neurons at different electrodes can be connected through multiple neurons and pathways; 

some PTSs may give a desired neuronal plasticity while others may give the opposite or 

none. Therefore we compiled a pool of 100 possible PTSs, each with a different spatial 

stimulation sequence (see details below). Initially, each PTS had an equal probability of 

being chosen. If the current PTS (PTSk) improved the performance, then the probability 
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of PTSk (Pk(t)) being chosen later (Pk(t+1)) increased, and the probability of other PTSs 

(Pi(t+1)) being chosen decreased (Figure 6.1B): 
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  [Equation 6.1] 

 

Otherwise, if PTSk worsened the performance, than Pk(t+1) decreased from Pk(t) and 

Pi(t+1) for other PTSs increased: 
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  [Equation 6.2] 

 

 In this manner, neuronal plasticity could be directed. A maximum probability of 

0.5 was set so that a high probability for one PTS would not saturate the pool of possible 

choices. A minimum probability of 0.002 was set to ensure each PTS remained available 

in the future. This allowed the flexibility to adapt to ongoing changes in neuronal 

network dynamics. 

6.2.3 Experiment design 

6.2.3.1 Determining PTS, SBS, and CPS 

 Before every experiment, biphasic voltage stimuli (Wagenaar et al., 2004) of 

±300 mV, 400 µs per phase were delivered randomly at the 59 usable electrodes on our 

MEAs for 30 minutes, one at a time, with random inter-stimulus-intervals between 200 
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and 400 msec. An electrode that evokes synaptic activity at multiple electrodes is capable 

of revealing changes in network-level synaptic connectivity, and one was selected as the 

probe electrode. Six electrodes that evoked only short responses (< 20 msec latency) were 

selected for “context” stimuli. They were stimulated in order, prior to the probe stimuli, 

with inter-stimulus intervals between 200 and 400 msec in order to provide a consistent 

context: these intervals were found to minimize the variability of subsequent evoked 

responses (Appendix G), and moreover in a simulated network, the block-context set did 

not cause plasticity themselves (Chao et al., 2007a) (see Chapter 5). Once the 

spatiotemporal structure of the 6 context stimuli and the probe was determined, it was 

fixed throughout the experiment and used to sample the network state every 6 seconds to 

collect movement data. This stimulation sequence is termed a context-control probing 

sequence (CPS) (see Section 5.2.1.3.1 and Appendix G). 

 The remaining electrodes that evoked activity were used as candidates for 

constructing PTS and SBS. The CPS electrodes were not used in PTS nor SBS. Each PTS 

consisted of 6 stimuli randomly selected from the candidate electrodes (repeated 

electrodes allowed). The inter-pulse-interval (IPI) between two consecutive stimuli was 

fixed at 10 msec. When training was required, a PTS was repetitively delivered until the 

beginning of the next context block, with an inter-PTS-interval between 200 and 400 

msec. The design of PTS with 6 stimuli was different from the paired stimulation design 

described in Chapter 5, since we hypothesized that more pronounced network plasticity 

could be induced by including more stimuli. Furthermore, since a PTS included 6 stimuli, 

the design of varying the inter-stimulus-interval of PTS described in Chapter 5 would 

result in too many combinations. Therefore, the inter-stimulus-intervals were fixed at 10 

msec, which was found to be in the range that could induce the most pronounced network 

plasticity in simulated networks (see Appendix H). When training was not required, SBS 

consisted of repetitively delivering one randomly selected PTS with inter-SBS-intervals 

again between 200 and 400 msec, but with randomly-shuffled electrode order each time, 
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delivered before the next CPS. The randomized order in SBS maintained comparable 

overall rates and distribution of stimuli as in PTS, while removing the repeating 

spatiotemporal pattern of neural activation. The probe-evoked response's overall firing 

rates, and in turn their distribution of CAs, depended on the amount and spatial 

distribution of stimulation (data not shown). Therefore, any changes in motor output 

would stem from changes in network connectivity. RBS, which was used to maintain 

correct movement in the closed-loop design described in Chapter 5, lacked the 

spatiotemporal structure of hexa-pulse clusters as in the PTS design in this study. This 

resulted in a significant difference between overall firing rates of probe responses after an 

RBS and after a PTS (data not shown).  

 Stimulation voltages of ± 300 mV were lower than those in our previous 

investigations of plasticity magnitude (Chao et al., 2007c; Chao et al., 2007a; Madhavan 

et al., 2007b) in order to better localize evoked activity and PTS-induced plasticity. This 

and only a few seconds of training stimulation at a time were intended to induce plasticity 

incrementally with enough resolution to reach desired network states and minimize 

overshoot. 

6.2.3.2 SBS-only stimulation 

 At the beginning of an experiment and prior to each closed-loop training, CPS and 

probe stimuli were delivered with SBS interspersed for 6 hours. This allowed 2 hours for 

the network to habituate to the presence of electrical stimulation and another 4 hours for 

calculating baseline plasticity without training. 

6.2.3.3 Closed-loop experiments with different desired movement directions 

 One closed-loop experiment consisted of four 2-hr training periods, each with a 

different desired direction of four possible directions (45º, 135º, -135 º, or -45 º), and 2-hr 

SBS-only periods in between. After a training period, the duration of plasticity was 
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measured during the 2-hr SBS-only period. The transformation matrix for each training 

period, T̂ , was calculated during the last 30 minutes in the preceding SBS-only period. 

Six closed-loop experiments to learn 4 desired directions each were performed on 5 

different cultures from 3 dissociations such that 23 training periods (trials) were analyzed 

(= 6*4 minus 1 where a technical error caused a loss of data). Two experiments were 

performed on one culture, with 13 days in between and different CPS and PTSs. 

6.2.3.4 Open-loop stimulation experiments 

 To test if the improvement in performance was an artifact of the electronics or 

electrode chemistry arising from a particular stimulation sequence, the stimulation 

sequence recorded from each closed-loop experiment was replayed to the same network 

about a day later. Since the same transformation might not successfully offset the CAs if 

activity changed, the transformations were recalculated as before. However, the particular 

transformation used does not affect the calculations of plasticity of motor output (Figure 

6.5) or of neuronal activity (Figure 6.6). Moreover, the transformation offsets between 

closed-loop and open-loop trials were found not significantly different (p-value= 0.34, 

Wilcoxon sign rank test, n= 23 trials * 2 directions; scaling transformations do not affect 

movement direction). 

6.3 Results 

6.3.1 Training contingent on motor output shifted neural activity towards the 

desired activity 

 We designed a closed-loop algorithm to train cultured networks to learn user-

defined motor outputs: moving ± 30º within a pre-defined direction. The closed-loop 

training algorithm was tested in 5 cortical networks grown over MEAs. Action potentials 

evoked by repeating probe stimuli, at a single fixed electrode, commanded motor output, 
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and electrical stimuli were fed back as training signals. The probability of selecting a PTS 

was updated based on how its application influenced the network’s short-term activity 

dynamics during the following motor output (see Section 6.2). Four goals were applied 

sequentially to a network, that is, the desired movement direction was changed ± 90º or 

180º three times. Overall success was judged by the ability of the network to crystallize 

successful short-term changes into long-term plasticity and also by its ability to adapt to 

new desired motor outputs. We found that with training, motor output was able to head 

toward the predefined desired directions (one representative experiment is shown in 

Figure 6.2A). The learning curves show that a greater proportion of movements were in 

the desired direction as training progressed (Figure 6.2C). Since a correct movement 

meant applying SBS instead of PTS, fewer training stimuli were needed in time, 

suggesting the network was learning the appropriate input/output function to allow 

successful behavior. 

 Learning curves for all experiments are shown in Figure 6.3. A random movement 

would give a 16.67% chance (horizontal line) of movement within ± 30° of the desired 

direction (60°/360°). In 5 out of 23 trials (21.7%), the learning curves were below the 

16.67% chance in the last 10 minutes of training (black arrows in Figure 6.3). This 

suggests that a more optimal training algorithm may exist. For example, using a different 

set of possible PTSs might improve success rates by inducing a different plasticity. The 

average normalized learning curve of closed loop experiments showed the success rate 

increased by a factor of 2.88 ± 0.08 (mean ± SEM) times after 2 hours of training for 

each desired direction (n= 23 trials, from 6 experiments) (Figure 6.4).  

 The stimulation sequence delivered during a closed-loop experiment was recorded 

and replayed to the same network the next day. This ruled out artifactual changes in 

network responses due to non-biological causes, such as electrochemistry or electronic 

noise, and ensured that neuronal plasticity was responsible for the observed learning. 

With open-loop training, motor output was unable to move toward the desired directions 



www.manaraa.com

 140 

(the motor outputs and the learning curves of the corresponding open-loop experiment of 

the closed-loop experiment shown in Figure 6.2A and 6.2C are shown in Figure 6.2B and 

6.2D, respectively). The average learning curve of open-loop experiments was 

significantly lower than in closed-loop experiments (p-value= 9.9e-54, n= 23 trials, 

Wilcoxon signed rank test) (Figure 6.4). Changes in movement direction were distributed 

across a wider range of angles than with closed-loop training (compare Figures 6.2B and 

6.2A). Therefore, we concluded that the successful learning reflected biological plasticity 

in the neuronal networks, and required closed-loop training in which stimuli were 

contingent on behavior. 
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Figure 6.2. 
eural response to closed-loop and open-loop training: A. Closed-loop training: 
Movement trajectory (left column) and the change in the probability distribution of movement directions 

(right column) demonstrated the motor output adapted to the desired direction (black arcs). Desired 

directions of -135º, -45º, 135º, and 45º were applied in random order for 2-hr periods (light to dark blue in 

time) interspersed by 2-hr SBS-only periods (see Section 6.2). Successful motor output was considered to 

be movement within ± 30º of the desired direction. The smaller trajectory circle is a zoom-in of the 

beginning of the experiment and the 30-min SBS-only period (gray) used to calculate the transformation, 

T̂ . The probability distribution of movement directions during 10 minutes at the start of experiments was 

subtracted from that during the final 10 minutes, thus allowing negative values (red). B. Open-loop training: 

The closed-loop stimulation sequence was recorded and replayed to the same network. Movement 

trajectories (scaled to match the corresponding closed-loop experiment) changed but not necessarily 

towards the desired direction. The distribution of movement directions also changed but in a more 

distributed manner. Learning curves of (C) closed-loop and (D) open-loop examples shown in A and B: A 

learning curve was defined as the probability of movement in the desired direction within a 10-min moving 

time window (time step= 1 min). The probability of successful motor output increased in time when 

training was contingent on motor output. A random movement would give a 16.67% chance (horizontal 

line) of movement within ± 30° of the desired direction (60°/360°).  
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Figure 6.3. Learning curves for all closed-loop experiments: For each experiment, the learning 
curves and the time courses of different PTS probabilities are shown. See more about the PTS probability 

in Section 6.3.3 and Figure 6.7B. In 5 out of 23 trials (21.7%), the learning curves were below the 16.67% 

chance in the last 10 minutes of training (black arrows).  
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Figure 6.4. Average normalized learning curves of all closed-loop and open-loop 

experiments: To compare trends among different experiments, each learning curve was normalized by 
dividing by the probability of successful motor output when training began. The average normalized 

learning curve in the last 10 minutes of closed loop experiments was 2.88 ± 0.08  (mean ± SEM) times 

higher than at the start, which was significantly higher than 1.24 ± 0.03 for open-loop experiments (p-

value= 9.9e-54, n= 23 trials from 6 experiments, Wilcoxon signed rank test). An exponential curve fit gives 

a time constant of 10.6 minutes and a learning curve asymptote of 3.13 (SSE= 2.95, R-square= 0.7814). 
 

6.3.2 Changes in motor output arose from neuronal plasticity, not an elastic 

dependency on stimulation history 

 The improved performance could be due to plastic changes in the neuronal 

network or, alternatively, due to an elastic dependency on the recent stimulation history. 

An elastic change in the neurons’ responsiveness to stimuli was observed in dissociated 

cortical cultures, where the sensitivity of neurons selectively adapted to stimulation with 

different frequencies, and this change in the sensitivity faded away within several 

minutes after stimulation was removed (Eytan et al., 2003). In order to characterize the 

plasticity, we followed the motor output after switching closed-loop training back to the 

SBS-only stimulation, and quantified whether the learned movement was maintained, and 

if so, for how long.  



www.manaraa.com

 144 

 By sampling the distribution of movement angles every 10 minutes from 1 hour 

before to 2 hours after the closed-loop experiment, we found that: (1) the movement 

angle gradually converged to the desired directions during closed-loop training, and (2) 

the learned directions were maintained after training during SBS-only stimulation. 

Results from the experiment used in Figure 6.2 are shown in Figure 6.5A. The 

distribution of the 10-min SBS-only period immediately before (Pre) closed-loop training 

was significantly different than that immediately after (Post) closed-loop training 

(histograms on the right side of Figure 6.5A). This training-induced plasticity led to 

desired motor outputs in 18 out of 23 trials (78.3%) (see Figure 6.3). This demonstrated 

that closed-loop training successfully directed network plasticity, that directed plasticity 

had occurred (Figure 6.5C). Moreover, the distributions were not significantly different 

between the last 10 minutes of the training and the next 10 minutes of the SBS-only 

control (Figure 6.5D). This indicated that motor outputs were preserved in the SBS-only 

period after training was turned off, and further demonstrated that the improved 

performance was due to network plasticity, not an elastic response to particular stimuli or 

to non-biological causes (such as stimulation artifacts of PTS). 

 In order to investigate the duration of training-induced plasticity, the change-to-

drift ratio (C/D, see the definition in Section 3.2.2.3) between CAs in different 10-min 

periods after training (Post, see Figure 6.5) moving with 1-min time steps and CAs in a 

10-min reference period immediately before training (Pre) was calculated. The mean and 

SEM of C/D across closed-loop and open-loop periods (n= 23 trials) was compared to 

C/D across equivalent periods of SBS-only stimulation conducted before training (n= 12 

closed-loop and open-loop experiments) (Figure 6.6A). C/D across closed-loop period for 

each trial is also shown (Figure 6.6B). Closed-loop training-induced plasticity was 

significantly greater than background plasticity (termed “drift”, measured before training) 

for 80 minutes (Wilcoxon rank sum test, α = 0.01) (Figure 6.6C). Replayed open-loop 

stimulation did not induce significant plasticity. The decrease in C/D beginning about 70 
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minutes after closed-loop training indicates that CAs returned back to the distribution 

before training, and so did movement directions. The return could be due to an active “re-

habituation” to the SBS-only stimulation. SBS, while less structured than PTS, still has a 

spatiotemporal structure and the ability to induce plasticity. 

 For replayed open-loop stimuli, the distribution of movements was less focused 

(Figure 6.5B; also see Figure 6.4B), and no significant changes in motor output (Figure 

6.5C) or neuronal activity (Figure 6.6) occurred for most of the experiments. Desired 

movement directions were found in 4 out of 23 open-loop trials (17.4%) during the last 

10 minutes (see -45º trial in Figure 6.2B), which was close to the 16.67% chance but 

significantly lower than the 78.3% success rate for closed-loop experiments. Interestingly, 

despite having an identical stimulation sequence, the PTSs in open-loop training could 

not cause noticeable plasticity. When contingent on neural activity, the set of PTSs were 

able to incrementally shift network dynamics until a significant functional change was 

detectable. 
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Figure 6.5. Long-term plasticity of movement direction: A. Movement directions became 

concentrated within ± 30º of the desired direction (red numbers and horizontal lines) during closed-loop 

training (CL) and persisted into the SBS-only periods. Data is from the same representative experiment as 

in Figures 6.2. The distribution of movement angles was sampled every 10 minutes from 1 hour before to 2 

hours after the closed-loop experiment (gray scale). The distributions of the occurrence of different 

movement angles during 10-min SBS-only periods immediately before (Pre) and immediately after (Post) 

closed-loop training are shown in the histograms (right). B. Changes in movement direction were not 

observed in the corresponding open-loop experiment (OL). C. The distribution of movement angles in Pre 

periods was significantly different than that in Post periods for closed-loop training, suggesting directional 

plasticity occurred. This did not occur for replayed open-loop stimulation suggesting plasticity was not a 

stimulation artifact. P-values of the difference in movement angle distributions for 23 desired directions 

(two-sample Kolmogorov–Smirnov test, two-tailed) are represented in box plots showing the first (lower) 

quartile, the median, and the third (upper) quartile. Outliers are indicated as black dots, and the largest and 

smallest non-outlier observations are indicated as tic marks (whiskers). The median p-value for closed-loop 

experiments was below a significance level of 0.05 (0.016 median). D. The distribution of movement 

angles between the last 10 minutes in closed-loop (or open-loop trials; CL, OL) and that during the next 10 

minutes of SBS-only (Post) were not significantly different, demonstrating the directed plasticity was not 

an artifact of PTS history. 
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Figure 6.6. Plasticity of neuronal activity induced by closed-loop training lasted for 80 

minutes: Plasticity induced by closed-loop training was significantly greater than background plasticity 
before training, for 80 minutes on average for all experiments, but not for replayed open-loop stimulation. 

A. The change-to-drift ratio (C/D, see the definition in Section 3.2.2.3) between CAs in different 10-min 

periods after training (Post, see Figure 6.5) moving with 1-min time steps and CAs in a 10-min reference 

period immediately before training (Pre) was calculated. The mean and SEM of C/D across closed-loop 

and open-loop periods (n= 23 trials) was compared to C/D across SBS-only periods during the first 6 hours 

of SBS-only stimulation (Before training, n= 12 closed-loop and open-loop experiments). B. C/D across 

closed-loop period for each trial. In each subplot, C/D of each 10-min period is indicated as a gray dot, and 

the overall trend is shown by a smoothed time course, a moving average with 30-point span, of C/D (green 

curve). C. Closed-loop training-induced plasticity was significantly greater than background plasticity 

measured before training for 80 minutes. Time course of p-values were calculated by comparing C/D of 

closed-loop and open-loop experiments to C/D before training (shown in A). Plasticity in closed-loop 

experiments was significantly greater than background plasticity for 80 minutes (Wilcoxon rank sum test, α 

= 0.01). 

 

6.3.3 Training required different PTS at different times 

 A neural network is continuously plastic, being modified by both stimulus-evoked 

and spontaneous activity. The same PTS may therefore have different effects at different 

points in time, and successful adaptation to a desired motor output would require 
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application of PTSs in a certain sequence. This is what we observed (Figure 6.7B), in 

agreement with our preliminary results from Chapter 5 (Figure 5.4E for a simulated 

network and Figure 5.8C for a living culture). Additionally, logic dictates that a finite 

amount of plasticity is needed to achieve the desired motor output. A given PTS could 

induce appropriate plasticity initially, but continued application of the PTS could be 

maladaptive.  

 We also found that fewer PTSs were needed across a training period to maintain 

successful motor output (Figure 6.7C). The trend of the PTS-delivering frequency was 

measured by counting successful PTSs in a 10-min moving time bin with 1-min time step 

and normalized by its maximum value. We defined a successful PTS as one that 

improved performance at least one time, and found that the occurrence of successful 

PTSs monotonically decreased over the last hour (Spearman correlation of means, one-

tailed, rho= -0.89, p-value= 1.2e-31, n= 231 successful PTSs in 23 trials). This suggests 

that the training stimuli which were successful in the first hour were less often or no 

longer required during the last hour to maintain a high rate of correct motor outputs (see 

average closed-loop learning curve in Figure 6.4).  

 Although the training algorithm increased the probability of occurrence of a PTS 

based on the success of short-term “elastic” responses after the next probe stimuli, the 

elastic responses became consolidated as long-term plastic changes in time. This is 

demonstrated by the stability of the distribution of movement directions into the SBS-

only period following training (Figure 6.5), the learning curves (Figure 6.4), maintenance 

of the plasticity of neuronal activity (Figure 6.6), and progressively fewer PTSs being 

needed to maintain desired movement (Figure 6.7C). At the start of training, the changes 

in the probe responses were indeed initially short-term elastic responses because they 

were not maintained, requiring reapplication of PTSs. 
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Figure 6.7. Training required different PTS at different times: A. A normalized version of the 
learning curve shown in Figure 6.2C. B. PTS probability in time for different desired directions, color 

coded to match A. Various series of PTS were needed to induce appropriate neural plasticity and successful 

motor output. For clarity, the PTS with lower probabilities were not plotted. Electrode locations and order 

(right) for the PTS indicated by red arrows are shown in 8 by 8 grids of electrode locations. C. Across the 

23 trials, fewer PTS were needed in time to maintain successful motor output. The frequency of occurrence 

of a PTS was measured by a 10-min moving time bin with 1-min time step and normalized by its maximum 

value (set to 1). The initial rise occurred while appropriate PTSs were searched. PTS occurrence 

monotonically decreased over the last hour (Spearman correlation of means (dots), one-tailed, rho= -0.89, 

p-value= 1.2e-31, n= 231 successful PTSs in 23 trials). A successful PTS was defined as one that improved 

performance at least one time. A cubic polynomial (red) was fit to the data to better visualize the trend. 
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6.4 Disccusion 

 Following a footpath over a mountain range is quicker and more energy efficient 

than digging straight through middle. We hypothesize that directing plasticity using 

training stimuli contingent on the motor output is more efficient than blindly forcing 

plasticity, for example, via a large tetanic stimulation or open-loop DBS. Moreover, since 

neuronal activity is continuously plastic, each electrical stimulus and ongoing 

spontaneous activity alter the landscape, and routes cannot be plotted in advance. 

Learning is an ongoing and continuous process. Our training algorithm allowed the 

probabilities of the PTS pool to change, and “solutions” to achieve desired motor outputs 

were explored in real-time.  

 The learning curves increased (Figure 6.4), but success did not approach 100%, 

and some trials showed no learning (Figure 6.3). A more optimal training algorithm may 

exist, although learning may have continued if training was not stopped after 2 hours. 

Using a larger set of possible PTSs could improve success rates by inducing a greater 

range of plasticity; the tradeoff is potentially longer training to find an appropriate 

sequence of PTSs. Different spatiotemporally structured PTSs, e.g. using more or fewer 

stimulation electrodes and different temporal arrangements, could also produce different 

performance. Furthermore, the 0.5 maximum criterion on the probability of selecting a 

PTS allows randomly-applied inappropriate PTS to produce setbacks. In addition, the 

0.002 minimum may keep unhelpful PTSs in the loop. Different optimization rules, such 

as evolving the PTS pool with a genetic algorithm, or introducing a PID controller to 

govern the duration of training could improve performance. Future work includes further 

characterizing the abilities and limitations of electrical stimuli to induce neuronal 

plasticity, optimizing training parameters, and applying closed-loop algorithms to achieve 

multiple simultaneous desired motor outputs (Chao et al., 2007a). 
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6.5 Conclusion 

For neurological disorders, targeted electrical stimulation of the brain contingent on the 

activity of the body or even of the brain itself could direct neuronal plasticity to bypass or 

accommodate aberrant neural activity. Initial candidate pathologies include those with (1) 

a focal neural source or related pathway at which to insert an MEA for electrical training 

and (2) a measurable physical manifestation from which to gather feedback on 

performance. As an example, to treat movement disorders, such as after stroke, electrical 

modification of motor areas could be guided by physical measurements of changes 

muscle activity using electromyography. Directly measuring motor output negates the 

need for context and probe stimuli to sample neuronal activity, allowing training to be a 

continuous process. Ongoing afferent input from different brain areas would be expected 

to negate the need for SBS. Re-linking the body and the brain with electrical training 

stimuli would give existing brain mechanisms the potential to overcome neurological 

disorders. 
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CHAPTER 7 

CO
CLUSIO
S A
D FUTURE WORK 

 

7.1 Summary 

 Brains display very high-level parallel computation, fault-tolerance, and 

adaptability, all of which are properties that we struggle to emulate in engineered systems. 

Scientists and engineers have made attempts to cross-fertilize ideas from neuroscience 

into computing in order to build machines that operate in a brain-like manner. The 

neurocomputer, where a complicated language is naturally programmed and organized in 

the system, seems possible and may lead to a new generation of computing devices. 

Advances in the biocompatibility of materials and electronics have allowed neurons to be 

cultured directly on metal or silicon substrates, through which it is possible to stimulate 

and record neuronal electrical activity. The dissociated neuronal culture is one of the best 

candidates for the neurocomputer because of its: (1) Functional merits: dissociated 

cultured networks preserve many aspects of complex spatiotemporal activity patterns 

observed in the brain (Gross and Kowalski, 1999; Shefi et al., 2002; Wagenaar et al., 

2006c; Rolston et al., 2007) and can self-organize to be “shaped” by manipulations from 

experimenters (Jimbo et al., 1999; Shahaf and Marom, 2001; Kudoh and Taguchi, 2005; 

Baruchi and Ben-Jacob, 2007; Chao et al., 2007a, b; Li et al., 2007; Madhavan et al., 

2007c, b; Novellino et al., 2007). (2) Technical merits: the cultured network system 

provides high flexibility and accessibility. For flexibility, the dissociated cultured 

network’s size and connectivity pattern can be controlled (Corey et al., 1991; Maher et al., 

1999; Kam et al., 2001). For accessibility, the cultured network’s activity can be recorded 

with imaging (Bonhoeffer and Staiger, 1988; Parsons et al., 1989; Parsons et al., 1991; 

Potter, 1996) and electrodes (Gross et al., 1977; Pine, 1980) and stimulation can be 
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administered by electrical (Jimbo and Kawana, 1992; Gross et al., 1993b), optical 

(Bucher et al., 2001; Suzurikawa et al., 2007) and pharmacological (Segal, 1983; Gibbs et 

al., 1997; Baruchi and Ben-Jacob, 2007) means. 

 By embodying cultured networks on multi-electrode arrays (MEAs) with a virtual 

robot (an animat), we successfully demonstrated one of the most important features of the 

brain: goal-directed learning. We showed a simple adaptive goal-directed behavior: 

learning to move in a user-defined direction in living MEA cultures (Chapters 5 and 6), 

and showed that multiple tasks could be learned simultaneously in simulated networks 

(Chapter 5). These results suggest that even though a cultured network lacks the 3-D 

structure of the brain, it still can be functionally shaped and show meaningful behavior. 

This provides a stepping stone towards designing future neurocomputers with cultured 

networks. Here I will first summarize the major advances of findings described in the 

previous chapters, and discuss some possible next steps to continue from them. Then I 

will briefly discuss how far we are from realizing the neurocomputer and what hurdles 

remain. In the end, I will propose a detailed future project to reach further toward a 

neurocomputer. 

7.2 Major advances of findings and the next steps 

7.2.1 Biologically-inspired simulated networks 

 The simulated network of 1,000 leaky integrate-and-fire (LIF) neurons exhibited 

similar activity patterns to those found in living MEA cultures (Chapter 2), and 

successfully helped with the design of the closed-loop system (Chapters 3 to 5). However, 

the LIF model is a simplified model for spiking neurons with no capability of showing 

the rich dynamics observed in cortical networks. By using a more realistic neuron model, 
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more realistic network properties might emerge. The Izhikevich neuron model
xiii
 is one of 

the best candidates for replacing LIF neurons in my simulated network, since it exhibits a 

wide spectrum of different dynamics found in biological neurons. Moreover, the 

Izhikevich model only requires twice the number of “FLOPs” (an approximate number of 

floating point operations, such as addition, multiplication, etc., needed to simulate the 

model) as the LIF model, whereas the Hodgkin-Huxley model, another realistic model, 

requires 240 times more FLOPs (Izhikevich, 2004). In addition to replacing LIF neurons 

with Izhikevich neurons, moving the simulated network to other more popular simulators, 

such as NEURON
xiv
 and GENESIS

xv
, will make it more useful to other researchers. 

Furthermore, adding the capability for the simulated network to interact with 

experimenters or the physical environment in real-time will also be useful for future 

closed-loop designs.  

7.2.2 
etwork activity decoding 

 Center of activity trajectory (CAT) could detect more subtle stimulus-induced 

plasticity than several other commonly-used statistics (Chapter 3). It also revealed the 

region-specific property of stimulus-induced plasticity in dissociated cortical cultures, 

which demonstrated the important role of neuron location in network functional plasticity 

(Chapter 3). In order to verify the network mechanisms of long-term region-specific 

plasticity in dissociated cortical cultures, optical imaging may aid the investigation by 

acquiring detailed information about stimulus-induced functional and structural changes.  

 A similar measure of population activity flow, as in CAT, was applied in a human 

study to quantify the trajectory patterns of the traveling electroencephalographic alpha 

                                                 

 

 
xiii
 http://vesicle.nsi.edu/users/izhikevich/publications/whichmod.htm 

xiv
 http://www.neuron.yale.edu/neuron/ 

xv
 http://www.genesis-sim.org/GENESIS/ 



www.manaraa.com

 155 

waves across the scalp, but with no learning task involved (Manjarrez et al., 2007). In 

order to evaluate the usefulness of CAT as a functional indicator of behavioral learning, 

CAT can be applied to analyze in vivo data from animals performing learning tasks. 

Furthermore, using CAT to analyze data from cultured slices, which preserve some of the 

morphological structures in the brain, will be helpful to evaluate whether region-specific 

distributed plasticity also exists in the brain.  

7.2.3 Re-afferentation in cultured networks 

 Random background stimulation (RBS) with an aggregated frequency of 1 Hz 

was used to restore sensory input to cultured MEA networks to obtain more 

controllability over stimulus-induced plasticity (Chapter 4). With an aggregated 

frequency of 3 Hz, RBS further demonstrated its ability to stabilize the network input-

output function (Chapter 5). However, these studies were performed in simulated 

networks, and thus require further validation in living MEA cultures. Furthermore, it is 

also useful to verify the effects of RBS with different aggregated frequencies on 

stabilizing network plasticity, and to explore the gap between low frequencies (e.g. 1 Hz 

and 3 Hz) and the high frequencies (e.g. 50 Hz) used in the burst-control stimulation 

protocol (Wagenaar et al., 2005). If an optimal frequency exists, it might shed light on 

how the nervous system utilizes sensory inputs or inputs from different brain areas for 

memory consolidation. 

7.2.4 Multi-task goal-directed learning in simulated networks 

 Multi-task goal-directed learning could be achieved in the simulated networks, 

where four sensory-motor mappings could be learned simultaneously (Chapter 5). 

However, to date, only learning with single-task goals was evaluated in living MEA 

cultures (Chapters 5 and 6). By using only one probe, corresponding to only one sensory-

motor mapping, Type II learning failure can be avoided (see Section 5.4.1) since no 
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overlap of probe responses exists. However, the closed-loop algorithm in Chapter 5 is not 

restricted to a particular type or a particular number of sensory-motor mappings. 

Therefore, in order to quantify the learning capacity of a network under this closed-loop 

design, we can gradually add sensory-motor mappings into the closed loop and evaluate 

network’s ability to learn them simultaneously. By minimizing the overlap of probe 

responses, Type II learning failure could be avoided (or reduced) when adding an 

additional sensory-motor mapping. 

 Besides investigating how many goals or tasks the network can learn, it is also 

important to understand how much information the network can store, and for how long. 

One way to study this is to reapply the same task (i.e. the switch of sensory mappings in 

simulation, see Chapter 5) after different delays from when it is learned previously, and 

see whether the network can learn it again in a more efficient way. Thus, we can 

distinguish whether the network is able to recall its past experience, or simply re-learn the 

task from scratch. If the network can retrieve what has been learned, then we can also 

evaluate the duration of memory storage by quantifying the frequency of successful 

recalls after different delays. 

 Simulated and living networks were embodied with an animat in Chapters 5 and 6, 

where interactions with its environment were extremely limited. The significance of 

environmental interactions in learning can be further investigated by embodying a 

simulated or living network with an actual robot situated in a physical environment, 

which supplies more realistic, complex and rich sensory inputs and noise.  

7.2.5 Goal-directed learning in MEA cultures and neuronrehabilitation 

 Goal-directed learning was demonstrated in living MEA cultures with an adaptive 

training feedback, where we hypothesize that directing plasticity using training stimuli 

contingent on the motor output is more efficient than blindly forcing plasticity, for 

example, via a large tetanic stimulation or open-loop deep brain stimulation (DBS) 
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(Chapter 6). Results from our controlled in vitro model encourage an in vivo investigation 

of how targeted electrical stimulation of the brain, contingent on the activity of the body, 

could treat aberrant neural activity. This requires determining the abilities and limitations 

of electrical stimuli to induce neuronal plasticity, optimizing training parameters, and 

applying closed-loop algorithms to achieve multiple simultaneous desired motor outputs.  

 In Chapter 6 we found that the learning curves increased (Figure 6.4), but success 

did not approach 100%, and some trials showed no learning (Figure 6.3). This can be 

further investigated by: (1) Extending training period instead of stopping after 2 hours, or 

by using a set of criteria to determine when to stop training; (2) Using a larger set of 

possible patterned training stimulations (PTSs) to induce a greater range of plasticity, but 

with the tradeoff of potentially longer training to find an appropriate sequence of PTSs; 

(3) Using different spatiotemporally structured PTSs.  

 We have attempted to investigate what spatiotemporal structures of PTSs made 

them successful in shaping network dynamics into a desired state. However, no 

conclusive correlations were found between the structure of PTSs, the location of probe 

stimulation, and the desired angle (data not shown). Even though this validates the use of 

the adaptive training algorithm to select training stimuli, a better understanding of why 

certain PTSs worked and why others failed might improve the construction of PTS pool, 

and lead to more effective training.  

 In order to find a more effective training stimulation pattern, the study in 

Appendix H needs to be extended by a more thorough investigation on a wider range of 

possible combinations of stimulation parameters. I hypothesize that the amount of 

network plasticity could be controlled by the spatiotemporal complexity (STC, see its 

definition and calculation in Appendix I) of training stimuli. By measuring network 

plasticity induced by stimuli with different STC in simulated networks, this relationship 

might be established. 
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7.3 The gap between our closed-loop system and the neurocomputer 

We have shown the cultured network’s capability to learn to move in desired 

directions (Chapter 5 and 6). But can we eventually develop a neurocomputer that we 

trust for piloting our flights, or controlling our nuclear power plants? What are the 

components that are necessary, even if not sufficient, for achieving these dreams? Here, I 

will discuss some open questions for filling the gap between our closed-loop system and 

a more brain-like neurocomputer. 

7.3.1 How to include more biological learning? 

In Chapters 5 and 6, we have demonstrated that the network could learn the 

desired association between sensory inputs and motor outputs with an adaptive training 

algorithm. With this adaptive training algorithm, the probability of selecting different 

training stimuli was stored and updated as a part of the closed loop. Therefore, a part of 

adaptability/learning actually occurred outside the biological network (but within the 

embodied system). If there is more learning programmed in the computer than in the 

biological networks, then the neurocomputer can never outperform the artificial neural 

networks or other artificial algorithms. Therefore, if we know how to include more 

biological learning, or how to utilize the learning capacity of biological networks, we can 

evaluate the benefits of incorporating live neurons into a computational device. 

7.3.2 How to include different forms of learning? 

Goal-directed learning shown in Chapters 5 and 6 demonstrates cultured 

networks’ ability to learn to discriminate different sensory inputs and different goals, that 

is, to learn different modes of behavior depending on signals or cues from the 

environment. Including other learning components would help scale our embodied 

cultured network to a more useful system. For example, if the embodied culture can 

generalize different sensory inputs or environmental cues that have similar meaning, then 
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the control for each action does not need to be stored and recalled when needed, and thus 

the behavior of the system can go beyond experience. Also, if the system can generalize 

inputs with noise, then it can be fault-tolerant. Furthermore, if the network can develop 

its own idea of the past experience without external supervision, or can be “aware” of 

what is learned, then it might acquire offline improvement of what is learned.  

7.3.3 How to remove the limitation of pre-determined embodiment? 

In Chapters 5 and 6, we embodied a cultured network with a pre-determined body 

and sensory-motor mappings, which places limitations on the system’s capability. For 

example, our brains are evolved together with our bodies and are optimized to control 

two hands. If we connect our brains to control four hands or two wings, the performance 

will be inadequate. However, we cannot conclude that our brains are unintelligent, just 

that intelligence cannot be demonstrated through the wrong body. Therefore, we need to 

find the “optimal” body and sensory-motor mappings that connect the cultured network 

and the body so that the hybrid system could show its maximal intelligence. However, it 

is extremely difficult to test every possible body and mapping on a cultured network. Not 

only it will be a time-consuming process, but also that different bodies and mappings 

cannot be evaluated on the same network due to the network’s non-stationary dynamics. I 

propose a possible approach to find an optimal way to embody the network, which is 

described in Section 7.4. 

7.3.4 How to implement more complex sensory inputs and motor outputs? 

In order to encode more sensory inputs that have different meanings to the 

network, we need to construct feedback stimuli with greater resolution spatially and 

temporally. Another way to increase the resolution of feedback stimuli is to pattern the 

morphology of the network, so that stimuli that introduce similar effects on the non-

patterned network could have more distinct or more independent meanings in the 
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patterned network. For activity decoding, in order to generate more distinct motor outputs, 

we need to access network activity in more detail. These require different technologies 

than conventional MEA system. Some possible options are described in Section 7.4.  

7.3.5 How to maintain the neurocomputer? 

Even if we could train an embodied neuronal culture to learn a complex goal, 

whether we can maintain the biological condition of the network so that the system can 

continuously perform the required task determines the usefulness of the system. The 

longest lifespan of a MEA culture in our lab is about two years. Thus, the fundamental 

questions are how to extend the lifespan of a culture and maintain its performance, or 

how to transfer its learning to a new network, which is analogous to copying data from an 

old computer to a new one. 

7.4 Future work: a step toward the neurocomputer 

 The closed-loop design in Chapters 5 and 6 was an educated guess, the result of 

much trial and error. Population coding with center of activity (CA) is a subset of 

potential motor mappings, and the applications of RBS, PTS, and context-control probing 

sequence (CPS) are just one combination of all possible mappings for sensory feedback. 

A better closed-loop design might exist to evaluate the true capabilities of the embodied 

cultured network. Here I provide a heuristic for automated discovery of successful 

mappings, and further optimization of mappings. 

7.4.1 Overview 

In order to verify the true capabilities of the embodied cultured network, we need 

to find the “optimal” body and sensory-motor mappings that connect the network and the 

body. This is analogous to our brains, which are optimized through evolution to control 

our bodies, where its true intelligence cannot be demonstrated through a wrong body or a 

wrong control mechanism. In this proposal, I present a system for discovering optimal 
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sensory-mappings and bodies in an embodied cultured network and verify its maximal 

capability of adaptive learning, which is one of the most attractive properties of the brain. 

Inspired by concurrent evolution of the brain and the body, I propose to use an 

evolutionary algorithm, the genetic algorithm (GA) (Holland, 1975), to search for an 

optimal way to embody a cultured network, in order to answer two specific questions:  

1. Whether living neurons can be utilized to accomplish any complicated engineering 

goal, such as problem solving (Section 7.4.2).  

2. What is the maximal capability of the cultured network to learn a user-defined goal 

(Section 7.4.3).  

 

 

Figure 7.1. Searching for optimal mappings in embodied cultured neuronal networks: A. A 
cultured network on an MEA. B. Khepera robot and its sensors and actuators. C. Using evolutionary 

algorithm for global optimization of three mappings: (1) Decoding, (2) Encoding, and (3) Training.  

 

This is possibly the first attempt to use a living neural network to demonstrate 

complex motor learning. Additionally, unlike in most artificial neural network studies, 

where learning usually occurs only in the connection weights, one could target another 

important parameter: timing, which was found critical for the brain to continuously 
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coordinate the body (Swadlow, 1985). Furthermore, the proposed system will 

continuously process the network activity, interact with the environment, and feed back 

the sensory information. This preserves the real-time contingency between the embodied 

network and its surroundings, which is essential for high-level behavior displayed in 

brains. 

7.4.2 Optimize sensory-motor mappings for a complex adaptive goal-directed 

behavior 

I propose to use GA to search for optimal sensory-motor mappings to embody a 

cultured network with the Khepera robot
xvi
 in order to show complex adaptive behavior 

in a physical environment. The robot will be equipped with two types of sensors (a color 

video camera and 8 infra-red proximity sensors), and with two types of actuators (two 

wheels and a gripper) (Figure 7.1B). The goal is to learn to move to a target through a 

used-defined track, and identify and remove various obstacles blocking the way (Figure 

7.1C, bottom). This behavioral goal might involve various fascinating elements, such as 

motor-sequence learning, pattern recognition, and planning, etc.  

Three mappings (sets of parameters) need to be optimized by GA (Figure 7.1C):  

(1) Decoding: how motor mappings continuously translate activity recorded from the 

network into motor commands for the actuators.  

(2) Encoding: how sensory inputs are used to construct stimuli fed back into the 

network.  

(3) Training: how the training stimuli are instructed according to the robot performance.  

 

                                                 

 

 
xvi
 K-team. http://www.k-team.com. 
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Each connection in a mapping, which can be portrayed as the artificial neural 

network extended from the cultured network, is represented by two parameters (a weight 

w, and a time delay ∆t). For example, the output from actuator k at time t, Mk(t), is 

constructed by a linear combination of recorded activities with different time lags 

(multiple-input linear filter):  

 

( ) ( )∑
=

∆−⋅=
@r

i

kiikik ttAwtM
1

,,      [Equation 7.1] 

 

where Ai(t) represents the activity from recorder i, and @r represents the total number of 

recorders (Figure 7.1C); wi,k and ∆ti,k represent the weight and the time delay of the 

connection from Ai to Mk, respectively. In GA, one possible set of parameters which 

represents the whole-system mappings is defined as a “parent”. Robot performance under 

each parent is evaluated by two fitness functions: (1) whether the goal is achieved within 

a fixed period of time, and (2) whether the behavior is improved over time. Best-ranking 

parents are selected to reproduce “offspring” by genetic operations (crossover and 

mutation), which will become the next parents. The process is iterated until a “solution” 

is found or other termination conditions are reached. 

7.4.2.1 Narrow down the search of optimal mappings by simulation 

 Due to the characteristic slow convergence of GA, one could first narrow down 

the search by using a simulation. A biologically-inspired simulated network, which has 

shown many properties similar to those exhibited in cultured networks (Chao et al., 2005; 

Chao et al., 2007c), will be embodied with a simulated Khepera robot
xvii
, which can 

amplify searching efficiency by bypassing the restriction of real-time controllability of 

                                                 

 

 
xvii
 Webots. http://www.cyberbotics.com. 
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the real robot. The simulated network I constructed (see Chapter 2) can run in the scale of 

real-time, which might not be fast enough for searching optimal mappings in the 

enormous solution domain. This could be solved by moving the model from simulator 

CSIM, which is in MATLAB platform, to C++, or by using a faster computer or a 

computer cluster. 

7.4.2.1.1 Alternatives 

If no solution converges from GA, one could use an alternative method: memetic 

algorithm (Moscato, 1989), which is a population-based approach for heuristic search in 

optimization problems. For some problem domains they are orders of magnitude faster 

than traditional GA (Moscato, 1989). 

7.4.2.2 Optimize mappings for living cultured networks with the real robot 

Starting from a smaller set of solutions obtained by the simulation, I propose to 

use GA to search for optimal mappings for living cultures to control the Khepera robot to 

learn the goal behavior. Due to non-stationary dynamics in living networks, the 

performance of “bad” parents might be “good” in the future. Thus, GA will be modified 

to preserve a minimal probability for each possible solution being selected in order to 

ensure its availability in future iterations. The experimental setup to interface a living 

culture and the Khepera robot includes two components:  

7.4.2.2.1 Feedback stimulation 

I propose to use the light-addressable stimulation technique (Suzurikawa et al., 

2007), which can overcome the limitations of fixed electrode numbers and densities in 

conventional MEAs, in order to increase the spatial resolution of stimulation and thus 

widen the exploration for solution in Encoding and Training mappings (the total number 

of nodes in Feedback stimuli, @f, see Figure 7.1C). 
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7.4.2.2.2 Recording 

I propose to use both the conventional MEA which provides high temporal 

resolution, and the calcium imaging which provides high spatial resolution. The 

comparison of results from these two recording systems should shed lights on how the 

nervous system utilizes spatiotemporal precision for motor mappings. 

7.4.3 Evaluate the maximal learning capability with evolvable bodies 

Evolvable organisms, whose morphology and functions (sensors and actuators) 

were coded by a graphic representation (Figure 7.2), were used to demonstrate interesting 

behaviors, such as swimming and jumping (Sims, 1994; Zykov et al., 2005). I propose to 

use GA to optimize the proposed evolvable sensory-motor mappings together with this 

evolvable body, and verify whether the goal behavior can be achieved more effectively 

and efficiently as compared to the results from Section 7.4.2. Furthermore, without 

restricting the pre-determined body, one could gradually increase the complexity of the 

task and verify the maximal learning capability of the system. 

 

 
 

Figure 7.2. Evolvable bodies: Using graphic representation to construct different bodies. (Figure edited 
from K. Sims, 1994) 

 

7.4.4 Expected results and impacts 

Without specific knowledge about how living neural networks self-organize to 

control a body to learn a goal, global optimization methods, such as evolutionary 
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algorithms, allow a thorough search for possible solutions. This enables the utilization of 

living neurons for an engineering purpose (e.g. control a robot to achieve a goal). 

Furthermore, by finding the optimal combinations of a body and sensory-motor mappings, 

we can verify the maximal learning capacity (or even true intelligence) of the embodied 

cultured network, which can elucidate the possibility of the neurocomputer as the agent to 

future intelligent machines. The knowledge gained from the optimal mappings could also 

provide insights about learning and memory in the nervous system, which could further 

lead to direct development of an electronic computer based on the operational principles 

of biological brains. 
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APPE
DIX A 

PARAMETERS FOR THE SIMULATED 
ETWORKS I
 
EURAL 

CIRCUIT SIMULATOR (CSIM)
xviii

 

 

 The parameters used in Neural Circuit SIMulator (CSIM) (Natschlager et al., 

2003) and their implementations were shown below: 

A.1 General simulation parameters 

Parameter Value in CSIM 

Integration time step 100 µsec dt 

Recording time step for APs 100 µsec MexRecorder:spikes:dt 

Recording time step for synaptic weights 10- 500 msec MexRecorder:W:dt 

 

A.2 
etwork parameters 

Parameter Value Reference value 

# of neurons 1,000 —— 

# of synaptic connection ~50,000 —— 

Synapses per neuron 50 ± 15 —— 

% of inhibitory neurons 30 
20 (Song et al., 2000) 

25 (Izhikevich et al., 2004) 

% of self-firing neurons 30 
~30 (Latham et al., 2000a; Latham 

et al., 2000b) 

 

 

                                                 

 

 
xviii

 http://www.lsm.tugraz.at/csim/index.html 
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A.3 
euron parameters 

A.3.1 LIF neuron 

Parameter Value Reference value in CSIM 

Vresting -70 mV  LifNeuron:Vresting 

Vinit -70 mV  LifNeuron:Vinit 

Vthresh -54 mV  LifNeuron:Vthresh 

Vreset -60 mV  LifNeuron:Vreset 

Trefract 3 msec  LifNeuron:Trefract 

Cm 3e-8 F  LifNeuron:Cm 

Rm 1e6 ohm  LifNeuron:Rm 

ττττm 30 msec  —— 

 

A.3.2 Self-firing 

Parameter Value Reference value in CSIM 

Inoise (self-firing) 30 nA By optimization LifNeuron:Inoise 

Inoise (non-self-firing) 10 nA By optimization LifNeuron:Inoise 

 

A.4 Synapse parameters 

A.4.1 General  

Parameter Type in CSIM 

Type of excitatory synapses STDP + frequency-dependent DynamicStdpSynapse 

Type of inhibitory synapses Frequency-dependent DynamicSpikingSynapse 
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A.4.1 Frequency-dependent  

A.4.1.1 Excitatory 

Parameter Value Reference value in CSIM 

R0 100% —— DynamicStdpSynapse:r0 

U 0.5 
~0.6 (Markram et al., 1998a) 

0.5 (Izhikevich et al., 2004) 
DynamicStdpSynapse:U 

u0 0.5 —— DynamicStdpSynapse:u0 

D 800 msec 
~800 msec (Markram et al., 1998a) 

800 msec (Izhikevich et al., 2004) 
DynamicStdpSynapse:D 

F 1 sec 1 sec (Izhikevich et al., 2004) DynamicStdpSynapse:F 

ττττ 3 msec 5- 6 msec (Izhikevich et al., 2004) DynamicStdpSynapse:tau 

 

A.4.1.2 Inhibitory 

Parameter Value Reference value in CSIM 

R0 100% —— DynamicSpikingSynapse:r0 

U 0.5 
~0.6 (Markram et al., 1998a) 

0.2 (Izhikevich et al., 2004) 
DynamicSpikingSynapse:U 

u0 0.5 —— DynamicSpikingSynapse:u0 

D 800 msec 
~200 msec (Markram et al., 1998a) 

700 msec (Izhikevich et al., 2004) 
DynamicSpikingSynapse:D 

F 1 sec 20 msec (Izhikevich et al., 2004) DynamicSpikingSynapse:F 

ττττ 3 msec ~2 msec (Abbott et al., 1997) DynamicSpikingSynapse:tau 
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A.4.2 STDP (excitatory synapses only) 

Parameter Value Reference value in CSIM 

A+ 0.5 
0.5% (Song et al., 2000) 

0.4% (Izhikevich et al., 2004) 
DynamicStdpSynapse:Apos 

A- 0.5*1.05% 
0.5*1.05% (Izhikevich et al., 2004) 

0.4% (Izhikevich et al., 2004) 
DynamicStdpSynapse:Aneg 

ττττ+ 20 msec 

20 msec (Izhikevich et al., 2004) 

~13 msec (Froemke and Dan, 2002) 

15 msec (Izhikevich et al., 2004) 

DynamicStdpSynapse:taupos 

ττττ- 20 msec 

20 msec (Izhikevich et al., 2004) 

~34 nsec (Froemke and Dan, 2002) 

20 msec (Izhikevich et al., 2004) 

DynamicStdpSynapse:tauneg 

Wup 0.1 0.5 (Izhikevich et al., 2004) DynamicStdpSynapse:Wex 

Wlow 0 0 (Izhikevich et al., 2004)  

µ+ 1 —— DynamicStdpSynapse:mupos 

µ- 1 —— DynamicStdpSynapse:muneg 

ττττpre 34 msec 28 msec (Froemke and Dan, 2002) DynamicStdpSynapse:tauspre 

ττττpost 75 msec 88 msec (Froemke and Dan, 2002) DynamicStdpSynapse:tauspost 
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APPE
DIX B 

CALCULATIO
S OF THE STATISTICS FOR EXPERIME
TS I
 

SIMULATIO
S A
D LIVI
G CULTURES 

 

 The evoked responses within 100 msec (to include all evoked responses) after the 

stimuli of random probing sequences (RPSs) were used for calculations of the statistics 

compared in Chapter 3. The dimensionalities of different statistics are shown in Table 

B.1. For those statistics that include temporal information (FRH, MI, SCCC, JPSTH, and 

CAT), responses within 100 msec were binned by a 5 msec moving time bin with 500 

µsec time step. 500 µsec time step was used to obtain fine temporal resolution, since it 

was less than the duration of an action potential. 5 msec bin size was used to acquire 

action potentials on multiple electrodes within a single bin. Also, the same binning 

parameters were used for all statistics in simulations and in living cultures for fair 

comparison of their performance. 

B.1 Simulations 

B.1.1 Firing rate (FR) 

This most commonly used statistic quantifies the intensity of the evoked 

responses. During each simulation, stimuli at each electrode occurred multiple times 

(10.0 ± 3.1 trials) in one RPS. FR for evoked responses to each stimulation electrode was 

calculated by averaging the number of spikes counted at each recording electrode over 

trials, producing a 60-dimensional vector.  

B.1.2 Firing rate histogram (FRH) 

FRH expands on FR by including temporal information. FRH from recording 

electrode Ek to the probing stimulus at electrode Pi, i

k

P

EFRH , was the average number of 
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spikes counted in a 5 msec moving time window with 500 µsec time step over trials, 

which resulted in a 1 by 191 vector. FRH for evoked responses to stimulation electrode Pi 

was defined by joining i

k

P

EFRH  from 60 recording electrodes together, which formed an 

11,460-dimensional (191*60) vector. 

B.1.3 Center of activity trajectory (CAT) 

The definition of CAT is described in Section 3.2 (Equations 3.1 and 3.2). The X 

and Y components are both 1 by 191 vectors. By appending two components together, 

CAT for evoked responses to each stimulation electrode was a 382-dimensional (191*2) 

vector. 

B.1.4 Mutual information (MI) 

MI quantifies the statistical dependence, including higher order moments in 

addition to 2
nd
 order, between responses at different locations (Moddemeijer, 1989; 

Brunel and Nadal, 1998; Paninski, 2003). MI between two recording electrodes Ek and Ej 

for stimulation electrode Pi is defined as the mutual information between two 

distributions: i

k

P

EFRH and i

j

P

EFRH . Let i

k

P

EFRH = 191

1}{ =nnA  and i

j

P

EFRH = 191

1}{ =mmB , where An 

and Bm represent elements in FRHs. Then the MI between i

k

P

EFRH and i

j

P

EFRH is defined as: 
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where PX and PY represent the marginal probabilities of i

k

P

EFRH and i

j

P

EFRH , and PX,Y 

represents the joint probability of i

k

P

EFRH and i

j

P

EFRH . MI was estimated by using the 
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histogram-based mutual information methods described by Moddemeijer (Moddemeijer, 

1989). In this study, the MATLAB codes from Rudy Moddemeijer’s group were used
xix
. 

MI provides a non-directional connectivity map, which represents the dependence 

between activities at different pairs of electrodes. By joining the MI from every pair of 

electrodes, MI for evoked responses to each stimulation electrode was a 1,770-

dimensional (60*59/2) vector. 

B.1.5 Shift-predictor corrected cross-correlogram (SCCC) 

The corrected cross-correlogram (Michalski et al., 1983; Eggermont, 1992; Brody, 

1999; Franco et al., 2004; Ventura et al., 2005) removes the peak in the original cross-

correlogram that is due to co-stimulation of the neurons, and measures the association 

between neurons. For each pair of recording electrodes, the “raw” cross-correlogram was 

constructed by averaging the cross-correlograms between two spike trains from the two 

electrodes over trials. The “shift predictor” was constructed by averaging the cross-

correlograms between all possible pairs of spike trains from the two electrodes but from 

different trials. SCCC was then the raw cross-correlogram minus the shift predictor. In 

this study, the algorithm described by George Gerstein’s group was used
xx
.  

With the same binning resolution used for FRH, SCCC between each pair of 

recording electrodes was a (191*2-1)-dimensional vector which represents the 

correlations sequence at different lags. Therefore, SCCC for evoked responses to each 

stimulation electrode was a 674,370-dimensional ((191*2-1)*60*59/2) vector. 

 

                                                 

 

 
xix
 http://www.cs.rug.nl/~rudy/papers/abstracts/RM8902.html 

xx
 http://mulab.physiol.upenn.edu/crosscorrelation.html 
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B.1.6 Joint peri-stimulus time histogram (JPSTH) 

The JPSTH quantifies the causality between responses at different locations 

(Gerstein and Perkel, 1969; Aertsen et al., 1989; Ventura et al., 2005). JPSTH finds the 

fixed delay between sequences of spikes recorded at different pairs of neurons (electrodes) 

over multiple trials, which can depict causal relationships between them. Similar to 

SCCC, the shift-predictor was applied on the “raw” JPSTH to eliminate the time-locked 

stimulus-induced covariation due to co-stimulation. In this study, the algorithm and 

MATLAB codes from George Gerstein’s group were used
xxi
. The results can provide 

directional information about the connectivity. With the same binning resolution used for 

FRH, JPSTH between each pair of recording electrodes was 191*191-dimensional. 

Therefore, JPSTH for evoked responses to each stimulation electrode was a 64,571,370-

dimensional (191*191*60*59/2) vector. 

B.1.7 Center of activity trajectory with electrode locations shuffled (CAT-ELS) 

The electrode locations, Ek, were randomly shuffled. Then CAT-ELS was 

calculated according to Equations 3.1 and 3.2 (in Section 3.2) by using these shuffled 

electrode locations. For each network, the electrode locations were shuffled 10 times and 

10 different corresponding CAT-ELSs were generated.  

B.2 Experiments in living cultures 

B.2.1 Firing rate (FR) 

The number of spikes was counted at each recording electrode for each probe 

response and averaged every block. Thus, for each stimulation electrode, a 60-

dimensional FR vector was obtained for every 240 seconds (“block”, see Section 3.2).  

                                                 

 

 
xxi
 http://mulab.physiol.upenn.edu/jpst.html 
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B.2.2 Firing rate histogram (FRH) 

For evoked responses to each stimulus, the FRH was calculated by using a 5 msec 

moving time window with time step of 500 µsec. Thus, for each stimulation electrode, an 

11,460-dimensional (191*60) FRH vector was obtained for every block. 

B.2.3 Center of activity trajectory (CAT) 

Let i

k

P

EFRH be the average responses over each block, recorded at electrode Ei to 

stimulation electrode Pi. CAT for stimulation electrode Pi was then calculated from 

the i

k

P

EFRH by using Equation 3.1 and 3.2 (in Section 3.2). Thus, for each stimulation 

electrode, a 382-dimensional (191*2) CAT vector was obtained for every block. 

B.2.4 Shift-predictor corrected cross-correlogram (SCCC) 

With the same binning resolution used for FRH, SCCC between each pair of 

recording electrodes was calculated for every block. Thus, for each stimulation electrode, 

a 674,370-dimensional ((191*2-1)*60*59/2) SCCC vector was obtained for every block. 

B.2.5 Center of activity trajectory with electrode locations shuffled (CAT-ELS) 

CAT-ELS was calculated by the same shuffling procedure used in simulations. 

For each experiment, the electrode locations were shuffled 10 times and 10 different 

corresponding CAT-ELSs were generated. The dimensionality of CAT-ELS was the 

same as CAT. 
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Table B.1. The dimensionality of the statistics 

Dimensionality
*
 

Statistics 
Simulations Experiments in living cultures 

FR 60 60 

FRH 11,460 11,460 

MI 1,770 - 

CAT 382 382 

CAT-ELS 382 382 

SCCC 674,370 674,370 

JPSTH 64,571,370 - 

 

*
 The dimensionality is defined as the length of the statistic calculated from evoked responses to one 

stimulation electrode in one simulation or in one block (for experiments in living cultures). 
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APPE
DIX C 

EXPERIME
TAL SETUPS FOR LIVI
G MEA CULTURES 

 

 This appendix describes the detailed protocols for experiments with living MEA 

cultures, mentioned throughout Chapters 2 to 6, which include cell culture techniques and 

setups of recording and stimulation systems.  

C.1 Cell culture techniques 

C.1.1 Cell dissociation 

 E18 rat cortices from time-pregnant Sasco Sprague-Dawley rate (Charles River) 

were dissected and preserved in Hibernate E (Brainbits) at 4ºC. Cortices were put in 

2.5U/ml papain (Roche 108014) in Segal’s medium (Banker and Goslin, 1998a) for 20 

minutes in a 37ºC water bath. Cells then were dissociated by triturating 2-3 passes 

through a 1mL pipette tip, and stored in Neurobasal medium (Invitrogen) with B27 

(Invitrogen), 0.5 mM Glutamax (Invitrogen), and 10% horse serum (Hyclone). To 

remove debris, dissociated cells were passed through a 40µm cell strainer (Falcon) and 

centrifuged at 150 xg onto 5% bovine serum albumin (BSA) in phosphate buffered saline 

(PBS). The pellet of cells was re-suspended in Neurobasal medium. 

C.1.2 MEA coating and cell plating 

 MEAs were pre-coated with poly-ethylene-imine (PEI, Sigma 94832) and a 20µL 

drop of laminin (Invitrogen L2020). The drop of laminin was placed on the center of the 

MEA to cover the electrode grid of the size of 1.4 mm by 1.4 mm. 50,000 cells (~7000 

cells/mm
2
) were dropped on pre-coated MEAs. After 30 minutes of incubation, 1mL of 

Neurobasal medium was added into MEAs, and was replaced by feeding medium adapted 

from Jimbo et al. (Jimbo et al., 1998c) after 24 hours. Adapted Jimbo’s medium 
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contained Dulbecco’s modified Eagle’s medium (DMEM, Irvine Scientific), 10% horse 

serum, 0.5mM glutamax, and 1% sodium pyruvate (Sigma).   

C.1.3 Culture maintenance 

 Cultures were maintained in MEAs sealed with gas-permeable teflon membrane 

(Potter and DeMarse, 2001) inside an environmentally controlled incubator (at 35 ºC, 

65% RH, 5% CO2, and 9% O2). The culture medium was exchanged with fresh feeding 

medium once a week.  

C.2 MEA recording and stimulation 

C.2.1 Electrical recording 

 Data acquired through MCCard (Multichannel Systems) was recorded and 

visualized by using our publicly available acquisition and analysis software, Meabench 

(Potter et al., 2006). The spike detection was performed in real-time by identifying 

signals that cross a threshold of 5X RMS noise. Real-time artifact suppression tools 

(SALPA) allowed the detection of spikes as soon as 2 msec after an electrical stimulus 

(Wagenaar and Potter, 2002).   

C.2.2 Electrical stimulation 

 We delivered biphasic stimuli (monopolar) at 500 mV and 400 us per phase by 

using our custom-made 60-channel stimulation board (RACS) (Wagenaar et al., 2004; 

Wagenaar and Potter, 2004). The stimulator was controlled using real-time Linux with 

stimulation sequences coded by C++ or MATLAB.  
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APPE
DIX D 


ETWORK PLASTICITY I
 SPO
TA
EOUS BURSTS
xxii

 

 

Besides the plasticity found in stimulus-evoked responses described in Chapter 3, 

network plasticity in spontaneous bursts was also discovered in living cortical cultures. 

Three different statistics were used to quantify the dynamics of spontaneous bursts: 

center of activity trajectory (CAT), burst activity matrix (BAM), and burst initiation 

probability (BIP). The ability of these statistics to capture the underlying changes in 

network synaptic connectivity was further verified in the simulated network.  

D.1 Experiment protocols 

Details of the experiment protocols are described elsewhere (Madhavan et al., 

2007b). Briefly, we used tetanic stimulation to induce functional changes in 

spontaneously bursting dissociated cultures. Spontaneous activity was recorded for 3 

hours (Pre period). Tetanization consisted of a train of stimuli at 20 Hz, was applied 

simultaneously on two electrodes lasting for 15 minutes, followed by another recording 

of spontaneous activity for 3 hours (Post period). The tetanization was unusually long, 

compared to other studies (see Table 1.1), in order to increase the likelihood of inducing 

plasticity.  

 

 

 

 

                                                 

 

 
xxii
 Partial results from: Radhika Madhavan, Zenas C. Chao, and Steve M. Potter (2007): Plasticity of 

recurring spatiotemporal activity patterns in dissociated cortical networks. Physical Biology, 4, 181-193. 
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D.2 Spatiotemporal structure of spontaneous bursts 

D.2.1 Center of activity trajectory (CAT) 

CAT quantifies the dynamics of the spatial asymmetry of the activity distribution 

(described in Chapter 3). Measured from stimulus-evoked responses, CAT was capable 

of detecting more pronounced network functional plasticity following tetanus than the 

alternate statistics in both simulated and living networks (see Chapter 3). Additionally, 

tetanus-induced changes in CAT of spontaneous bursts were found in the simulated 

network (Figure 4.1). Similar to the results found in the simulated network, different 

types of spontaneous bursts were observed in living MEA cultures, each with a specific 

CAT pattern. Occurrences of different types of bursts were stable without any external 

stimulation (in Pre period), changed after the tetanus, and stabilized at a different set of 

bursts (in Post period) after a transition period (Figure D.1). These dynamics were 

consistent with the results found in the simulated networks (Figure D.1, and also see 

Chapter 4).  
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Figure D.1. Comparisons of tetanus-induced changes in CAT of spontaneous bursts in 

simulated and living networks: Different kinds of spontaneous bursts occurred in different periods in 
both simulated (Top) and living networks (Bottom). The same representation is used as in Figure 4.1.  

 

D.2.2 Burst activity matrix (BAM) 

The detailed calculation of BAM is described elsewhere (Madhavan et al., 2007b). 

Briefly, BAM for each burst was constructed by appending 60 firing rate histograms 

(FRH, see Appendix B), calculated from the 60 recording electrodes, together to form a 1 

by 60@ vector, where @ is the number of time bins in FRH. Unlike CAT, a population 

statistic that significantly reduces the dimensionality of the spatiotemporal structure of a 

burst, BAM preserves the detailed firing patterns recorded at each electrode during a 

burst. 
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Similar to the clustering result from CAT (Figure D.1), BAMs of bursts were 

clustered based on the similarity measure described by Beggs and Plenz (Beggs and 

Plenz, 2004; Madhavan et al., 2007b), where different types of bursts (called 

“avalanches”) were discovered. Furthermore, occurrences of bursts with different BAM 

structures were stable for hours without external stimuli (in Pre period), and changed 

after the tetanus (Figure D.2), which is consistent with the results shown by using CAT 

(Figure D.1). 

 

 

Figure D.2. Tetanus-induced changes in occurrences of spontaneous bursts with different 

BAM structures: A. The type of spontaneous bursts changed after the tetanus. Each stroke represents the 
occurrence of a spontaneous burst with a specific BAM structure (the belonging cluster is indicated on y-

axis). The grey bar indicates period of tetanization. The arrowheads indicate the timing of the different 

BAM clusters (clusters 22 and 4) shown in B. B. The BAMs of bursts in two different clusters. Each frame 

of BAM was shown in the original coordinates of an MEA. BAMs shared similar structure within a cluster, 

and were different across clusters. The sizes of the circles represent the number of spikes in that particular 

electrode for a particular time bin. 
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D.3 Initiation sites of spontaneous bursts 

D.3.1 Burst initiation probability (BIP) 

Bursts originate from various sites in the network, termed ‘burst initiation sites’, 

and then propagate to the entire network (Maeda et al., 1998b; Eytan and Marom, 2006). 

In addition to CAT and BAM, burst initiation properties were also used as a measure to 

quantify the tetanus-induced change. The burst initiation site is defined as the electrode 

that records the first spike at the burst onset, and the burst initiation probability (BIP) is 

defined as the spatial probability distribution of burst initiation sites over the 60 recording 

electrodes (Madhavan et al., 2007b). BIP was found stable before the tetanus (in Pre 

period), and changed across the tetanus (Figure D.3).This indicates that the tetanus 

induced changes in network functional connectivity, which was also demonstrated in the 

simulated network (see Section D.3.2). 

 

 
Figure D.3. Tetanus-induced changes in the spatial distribution of BIP: The probability of 
neurons around an electrode initiating a burst is shown by the different sizes of the circles (right). The 

spatial distribution (shown in the original coordinates of an MEA) of BIP did not change much before the 

tetanus (Pre1 and Pre2 periods, indicated in the bottom of Figure D.2A), and changed significantly across 

the tetanus (from Pre2 to Post1). 

 

D.3.2 BIP and underlying synaptic connectivity 

Eytan et al. (2006) identified early-to-fire neurons during the onsets of the burst 

and these initiation areas were found to be characterized by high neuronal density and 

recurrent excitatory and inhibitory connections (Feinerman et al., 2007). This correlation 
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was verified in the simulated network (Figure D.4). In simulation, the neurons that 

initiated bursts were identified in different 10-min periods, and BIP was calculated for 

each period. The burst rate decreased immediately after the tetanus, and gradually 

returned to the level before the tetanus after 10 minutes, but with a different spatial 

distribution of burst-initiating neurons. The corresponding underlying network synaptic 

connectivity during these periods was measured (Figure D.3). The network synaptic 

weights were “frozen” from a randomly-selected time frame from each 10-min period 

used to calculate BIP. On each frozen network synaptic state, a single spike was delivered 

at each neuron (a probe), one at a time, and the number of other neurons evoked by the 

spike input was measured to quantify the outward connectivity of that neuron. Intuitively, 

this quantity measures how extensively each neuron connects to others functionally at 

that synaptic state. Furthermore, the Gaussian noise for the fluctuation of membrane 

potentials for all neurons (see Chapter 2) was turned off to avoid any bias from self-firing 

neurons.  

The network connectivity was highly correlated to the burst initiation sites (Figure 

D.3), which suggests that BIP could be a direct indicator of network synaptic 

connectivity. The number of outward synaptic connections for each presynaptic neuron 

was also measured (Figure D.4), and the correlation between the spatial distribution of 

the synaptic connection and BIP (or functional connectivity) was absent. This suggests 

that the tetanus-induced changes in BIP or network connectivity were more related to 

network synaptic strengths (functional connectivity) than to the morphology of network 

synaptic connections (morphological connectivity).  
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Figure D.4. The distribution of burst-initiating neurons revealed the underlying network 

connectivity: The spatial distribution of BIP was measured over time across a tetanus in the simulated 
network (Left), and its dynamics were highly-correlated with the network connectivity, which measures 

how extensively each neuron connects to others (Right). 
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Figure D.5. Insignificant correlation between tetanus-induced changes in BIP and the 

topology of network synaptic connections: The number of synaptic connections, morphological 
connections with no concern to their weights, from each neuron was measured. The neurons that had more 

synaptic connections to other neurons were not necessary the neurons initiating bursts (compare to Figure 

D.4).  

 

D.4 Burst-induced plasticity 

 Spontaneous bursts can be used as an indicator of network plasticity. They also 

can induce network plasticity. Changes in connectivity across a burst were measured by 

delivering stimuli at each neuron (with frozen synaptic states) immediately before and 

after the burst (see detailed methods described in Section D.3.2). Examples of 

connectivity before and after a randomly-selected burst are shown in Figure D.6. The 

connectivity of the network immediately before the randomly-selected burst was different 

from the connectivity immediately after the burst, where formation and deletion of strong 

synapses (weight> 0.075) were observed.  

 Burst-induced plasticity maintained network synaptic weights while in 

equilibrium (see Chapters 4). The spatiotemporal structure of spontaneous bursts played 

an important role in this stabilizing effect on the network synaptic weights distribution 

during the steady state (Figure D.7). In order to evaluate this in a simulated network, the 

spiking pattern recorded from a series of spontaneous bursts during a 10-min period was 

shuffled and replayed into the same initial network. Two shuffling methods were used: (1) 

“Burst order shuffling” preserved the spatiotemporal structure of each spontaneous burst, 
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but shuffled their occurring order (the structure of a longer time scale). (2) “Spike 

swapping” repeatedly exchanged the neuron indices of randomly-selected pair of spikes, 

which retained the same spike times and the same distribution of total number of spikes 

at each neuron, but removed the original correlations between spike times (Rolston et al., 

2007). No significant difference between the synaptic weights distributions measured 

from the original burst sequence and after burst order shuffling (Figure D.7). This 

suggests that the order of different spontaneous bursts played no significant role in the 

stabilizing effect on network synaptic state. However, the stabilizing effect was absent 

after spike swapping, where the center of weights (CW) drifted away from the initial state. 

This indicates the significant contribution of the spatiotemporal structure of different 

spontaneous bursts to the stabilizing effect on network synaptic state. 
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Figure D.6. Spontaneous bursts induced formation and deletion of different synapses: 
Changes in the network connectivity across a spontaneous burst demonstrated burst-induced plasticity in a 

simulated network. Left. The connectivity of 8 randomly-selected neurons immediately before the burst. 

Red circles represent the neuron that received the test stimulus (see detailed methods in Section D.2.2), 

white lines indicate the activated synaptic connections, and small green dots indicate the neurons in which 

APs were evoked. Middle. The new strong synaptic connections (weight> 0.075) formed immediately after 

the burst. Right. The strong synaptic connections deleted immediately after the burst. 
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Figure D.7. The spatiotemporal structure of spontaneous bursts plays crucial role in the 

stabilizing effects on network synaptic weights: A. Firing rate histograms of a 10-min period for the 
original recording, after burst order shuffling, and after spike swapping. Each peak represents a 

spontaneous burst. Burst order shuffling retained the structure of each burst, while changed the order of 

bursts. Spike swapping altered the spatiotemporal structure of each burst, while maintaining the same 

network-wide firing rate (the histogram after spike swapping was identical to the original histogram). B. 

The center of weights (CW) measured from the three simulations. Burst order shuffling induced similar 

network plasticity as in the original recording, where both stabilized the network synaptic weights. 

However, CW drifted away after spike swapping, which suggests the significant role of the spatiotemporal 

structure of bursts in the stabilizing effect on network synaptic weights. 
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APPE
DIX E 


ETWORK PLASTICITY I
 THE TIMI
G OF DIRECT 

ELECTRICALLY-EVOKED ACTIO
 POTE
TIALS (DAPS)
xxiii

 

 

E.1 Introduction 

The precise temporal control of neuronal action potentials is essential for 

regulating many brain functions. From the viewpoint of a neuron, the specific timings of 

afferent synaptic inputs determines whether or not and when to fire an action potential. 

Plasticity of the timing of direct electrically-evoked action potentials (dAPs) was found in 

MEA cultures, where changes in latency of evoked action potentials adapted to different 

repetitive patterned stimuli (up to 4 msec or 40% after minutes of stimulation, and 13 

msec or 74% after hours of stimulation). The changes did not occur when the same 

stimulation was repeated while blocking synaptic activity, which indicates that plasticity 

of the timing of dAPs depended on the occurrence of synaptic activity. 

Several cellular mechanisms may cause changes in the latency of dAPs, such as 

fluctuations in membrane potentials (Lipski, 1981) and neural intrinsic excitability 

(Daoudal and Debanne, 2003; Zhang and Linden, 2003; Xu et al., 2005), which affects 

the delay that a stimulus evokes an action potential at the cell body. A detailed 

investigation on these mechanisms in a simulated network is shown in Section E.3. 

However, the activity-dependent plasticity in the timing of dAPs we found lasted for a 

much longer term (Bakkum et al., 2007), and thus was unlikely due to these short-term 

mechanisms. We hypothesized a new form of plasticity might be involved, plasticity in 

                                                 

 

 
xxiii

 Under review as: Douglas J. Bakkum, Zenas C. Chao,and Steve M. Potter (2007): Long-term activity-

dependent plasticity of action potential propagation in cortical networks. PLoS One. 
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axonal propagation, which affects the duration that a signal propagates from the evoked 

neuron to the recording site. Elucidating the cellular mechanisms of this different form of 

plasticity is left to future work, but possibilities include non-uniform changes in ion 

channel properties (Ganguly et al., 2000), in the geometry of varicosities and branch 

points (Goldstein and Rall, 1974) or axonal arbors, in the proximity of glia (Ishibashi et 

al., 2006b), and in lipid membrane composition (Bedlack et al., 1994). 

E.2 dAP in living networks 

Stimulation by one electrode evokes neural responses that can be recorded in a 

subset of the rest of the electrodes. Of these, dAPs have been observed up to 25 msec 

later and can be distinguished from subsequent synaptically-evoked action potentials 

(sAPs) based on their high reliability of occurrence (> 80%), low jitter (160 µs), and 

consistency of waveform (Lipski, 1981; Marom and Shahaf, 2002; Wagenaar et al., 2004) 

(Figure E.1). dAPs are presynaptic as they persist when synaptic activity is blocked using 

fast neurotransmitter receptor antagonists (Wagenaar et al., 2004). We quantified changes 

in the timing of dAPs by measuring their latencies after a stimulus (Figure E.1C). 

By varying a simple low frequency stimulation pattern every 40 minutes, we 

induced changes in the timing of dAPs. Each stimulation pattern consisted of 

alternatively stimulating two electrodes at 2-sec intervals (Figure E.2A). The second 

electrode, termed probe, was fixed and used throughout, while the location of a preceding 

context electrode was moved spatially every 40 minutes to make each new pattern. 

Interestingly, we found dAPs evoked by the probe stimuli changed via gradual shifts and 

jumps in latency (up to 4 msec or 40%), but not when the stimulation was repeated in the 

presence of antagonists of NMDA-R, AMPA-R, and GABA-R (Figure E.2B). This 

suggests that plasticity of the timing of dAPs depended on the occurrence of synaptic 

activity. 
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Figure E.1. Directly-evoked action potentials (dAPs) and synaptically-evoked action 

potentials (sAPs): Neural activity recorded on one electrode in response to stimulation at another 
consists of an early dAP-phase and a later sAP-phase. A. The raster plot (1 dot per action potential) shows 

the first 100 msec of neural responses to 3 hours of periodic 1/4 Hz probe stimulation (P). The firing rate 

histogram (B) and overlaid extracellular voltage traces across all trials (C) emphasize the consistency of the 

early phase with respect to the later phase. The sharp peaks in the histogram arise from the trains of two 

dAPs. A dAP is characterized by its low jitter, high reliability, and consistency of waveform. 
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Figure E.2. The timing of dAPs depended on ongoing neural activity and stimulation 

pattern: A. Experiment protocol. 1/4 Hz probe stimuli (red) produced dAPs whose latencies were 
investigated for plasticity. A context electrode (gray) was stimulated 2 seconds prior to each probe stimulus, 

and its location was shifted every 40 minutes to produce different patterns of stimulation (numbers and 

shaded bars). Right: electrode locations for data in B.  B. Example raster plots of a given dAP recorded on 

one electrode in response to probe stimulation of another electrode in culture media (left, Unblocked) and 

when blocking synaptic activity (right, Blocked). Ongoing neural activity modified latency (x-axis) and 

amplitude (color).  

 

E.3 dAP in simulated networks 

Here I used the simulated network to investigate how synaptic activity affects 

plasticity of the timing of dAPs found in living cortical cultures.  

E.3.1 STDP and membrane potential fluctuations 

By delivering a similar patterned stimulation used in living networks (Figure 

E.2A), similar changes in the timing of dAPs were observed in the simulated network 
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(compare left panels in Figures E.3A and E.2B). These changes in a single neuron is 

shown in Figure E.3B. However, these changes were absent when the STDP property in 

excitatory synapses was removed (Figure E.3C), or synaptic connections were removed, 

which is analogous to adding synaptic blockers (Figure E.3D). This supports the 

conclusion found in living networks, where synaptic activity was required for plasticity in 

the timing of dAPs. 

In order to eliminate the possibility that changes in the timing of dAPs were due 

to the variation of neurons’ membrane potentials, which directly affect their excitability, 

the Gaussian noise introduced to mimic fluctuations in membrane potentials were 

removed. Without random noise, but with STDP, gradual changes in the timing of dAPs 

across trials remained (right panel in Figure E.3A).  
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Figure E.3. Significant role of STDP in activity-dependent plasticity of the timing of dAPs in 

a simulated network: Activity-dependent plasticity of the timing of dAPs was associated with STDP but 
not with the fluctuation of neurons’ membrane potentials. A. Plasticity in the timing of dAPs was observed 

in the simulated network. The raster plot of probe responses recorded at electrode CR43 are shown. Two 

different colors (red and yellow) represent responses at two neurons near the electrode. B. Stimulation-

induced changes in dAP timing were observed in the simulated network only with STDP synapses. The 

raster plot of probe responses recorded at neuron 898 were shown. C. Plasticity of dAP timing was absent 

when removing the STDP property in excitatory synapses (frequency-dependent property, see Section 

2.2.2.2.2, remained). D. Plasticity of dAP timing was absent when removing all synaptic connections, 

which is analogous to adding synaptic blockers. Without the Gaussian noise on neurons’ membrane 

potentials (see the right panels in B, C, and D), only the stimulus-evoked activity remained in the network. 

dAPs, the responses that remained after adding “blockers” (right column), were indicted in blue. 
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E.3.2 Synaptic-strength dependent plasticity of the timing of dAPs 

In simulation, synaptic plasticity was an essential element for activity-dependent 

plasticity of the timing of dAPs (Figure E.3). In order to understand how a synaptic input 

affects the timing of a direct non-synaptic response, I used a simple network consisting of 

two leaky integrate-and-fire (LIF) neurons connected by one non-STDP synapse (Figure 

E.4A). A neuron (@1) was connected to a target neuron (@2) through a synapse (Syn12), 

where its synaptic weight was controlled by the experimenter. Spike inputs S1 and S2 

were delivered at @1 and @2, respectively, with various inter-pulse intervals (IPIs). S2 

represents the direct stimulus on @2. 

With IPI= 10 msec, the relation between the synaptic weight of Syn12 and timings 

of responses in @2 is shown in Figure 4B. The latency of non-synaptic responses to S2 

decreased when the weight of Syn12 increased. This demonstrated the influence of 

synaptic inputs, or synaptic plasticity in the network, on the timing of dAPs. The 

postsynaptic current (PSC) of Syn12 on @2 was higher with a greater synaptic weight 

(Figure E.4C), which affected the membrane potential of @2 and thus its timing of firing. 

Relations between the synaptic weight and the timing of responses with different IPIs are 

shown in Figures E.4D and E.4E. The latency of dAP depended not only on the synaptic 

weight but also the relative timing between the external stimulus (through S2) and the 

synaptic input (through S1). 

With one synaptic input, the change in dAP latency varied up to 5 msec (see 

Figure E.4D). Furthermore, the timing of the synaptic input regulated not only the timing 

of dAP but also its dependency on the weight of the synaptic connection (Figure E.4D). 

With multiple synaptic inputs per neuron, as in living cortical cultures, the maximal 

change in dAP latency was even more (data not shown). In addition, a rich dynamics of 

changes in the timing of dAPs under different combinations of synaptic weights and 

timings of synaptic inputs was found.  
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These simulation experiments indicate that synaptic plasticity could affect 

plasticity in the timing of non-synaptic responses. The possible mechanism is that 

different dynamics of synaptic inputs (measured as postsynaptic currents, PSC) induce 

different levels of membrane potentials, and directly change the excitability of neurons. 
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Figure E.4. Plasticity of the timing of dAPs depended on the timing of synaptic inputs: The 
latency of dAP depended not only on the weight of the synaptic input but also the relative timing between 

the external stimulus and the synaptic input. A. The structure of the simple network. B. The relation 

between the synaptic weight of Syn12 and timings of responses in @2 with IPI= -10 msec. dAPs (responses 

to S2) and sAPs (responses to S1) are indicated. C. The corresponding postsynaptic current (PSC) of Syn12 

on @2. D. The relation between synaptic weights and timings of responses with different IPIs. E. The 

separated plots of different IPIs shown in D. The same color representation is used. 
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 Random background stimulation (RBS) of aggregated frequency of 1 Hz helped 

maintain the stability of network synaptic weights after tetanization in simulated 

networks (Chapter 4). A higher aggregated frequency (~ 3 Hz) was found to have the 

same effect (Chapter 5). We hypothesized that the network synaptic weights drifted after 

a tetanization because of the ongoing spontaneous activity, consisting of mostly 

spontaneous network bursts. In both simulated networks and living cultured networks, 

spontaneous bursts were reduced at least 10 times by RBS (Figure 4.4), and so was the 

drift.  

 In another study, we found that tetanus-induced plasticity, measured in center of 

activity trajectories (CATs), was stabilized and maintained in living MEA cultures by 

reducing the occurrence of spontaneous bursts (Madhavan et al., 2007c) (Figure F.1). A 

burst-control stimulation protocol consisting of a group of electrodes cyclically 

stimulated with an aggregated frequency of 50 Hz was found to completely eliminate 

spontaneous bursts (Wagenaar et al., 2005). Although different mechanisms might be 

involved in RBS and the burst-control stimulation (see Section 5.4.3), these results from 

living networks support the hypothesis that spontaneous bursts are involved in the drift of 

network synaptic strengths after stimulus-induced changes.  
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 To be submitted as: Radhika Madhavan, Zenas C. Chao, and Steve M. Potter (2007): Electrical control 

of population bursting aids functional plasticity in cortical networks.  
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Figure F.1. Tetanus-induced changes maintained by reducing the occurrence of 

spontaneous bursts in living networks: The change-over-drift ratio (or C/D, which quantifies the 
dynamics of CAT of network responses, see definition in Section 3.2.2.3) before tetanus in less-bursty 

experiments (n= 8 experiments) was significantly lower than that in more-bursty experiments (n= 6 

experiments) (*, p-value< 0.05). This indicates that the drift in network responses was reduced by 

“quieting” spontaneous bursts. Furthermore, C/D across tetanization was significantly higher than C/D 

before tetanization in less-bursty experiment (**, p-value< 0.05), whereas this significance was absent in 

more-bursty experiments. This indicates that tetanus-induced plasticity was stabilized by reducing the 

occurrence of spontaneous bursts. This stabilizing effect was maintained at least for 2 hours after the 

tetanization (Madhavan et al., 2007c). 
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APPE
DIX G 

CO
TEXT-CO
TROL PROBI
G SEQUE
CE (CPS) MI
IMIZES 

THE VARIABILITY I
 PROBE RESPO
SES 

 

 The evoked responses to the last stimulus (probe) in context-control probing 

sequences (CPSs) were used to generate motor commands for the animat (in Chapters 5 

and 6). We found that by controlling the stimulation context (the stimuli before the probe) 

with inter-pulse interval (IPI) between 200 to 400 msec, the variability in the probe 

responses could be minimized in both simulated networks and living MEA cultures 

(Figure G.1). 

 In 5 stimulated networks and a living MEA culture, we delivered pairs of stimuli 

at two randomly selected electrodes. The stimuli at the first electrode (context) served as 

the context of the stimuli at the second electrode (probe). IPIs (time intervals from the 

context stimuli to the corresponding probe stimuli) were randomized between 100 msec 

and 2 seconds, and the time intervals between the probe stimuli and the next context 

stimuli were fixed at 2 seconds. By binning the IPIs with 100 msec moving window and 

10 msec step, we grouped the IPIs into 181 groups. The variability of CAs of the probe 

responses, whose corresponding IPIs belonged to the same group, was calculated. The 

variability was defined as: 

 

( ) ( )YX CACAyVariabilit varvar +=      [Equation G.1] 

 

 For each experiment, the variability calculated from different IPI bins was 

normalized by removing the mean then dividing by the standard deviation. The mean ± 

SEM of the normalized variability from 20 experiments in 5 simulated networks (4 

different stimulation pairs in each network) is shown in the left panel. The mean ± SEM 
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of the normalized variability from 4 experiments in a living MEA culture (4 different 

stimulation pairs) is shown in the right panel. The relation between normalized variability 

and IPI was fitted with a 6 degree polynomial (red curves) and the 90% confidence 

intervals (red dotted curves) were calculated. The minimum of the normalized variability 

was found between 200 to 400 msec in both simulated networks and the living MEA 

culture.  

 Compared to stimulating with random IPI, fixing IPI can reduce response 

variability. Using the same stimulation sequence, but instead of analyzing the responses 

per IPI, responses were analyzed for randomly-selected IPIs. The average normalized 

variability from 1000 different random samplings is shown as the black horizontal lines. 

The results indicate that by controlling IPI and the context electrode, the variability in 

probe responses can be reduced with a minimum between 200 and 400 msec IPIs. 

 

 

Figure G.1. Relation between variability of probe responses and IPI in simulated and living 

networks: The minimal variability in CAT of probe responses occurred with IPIs between 200 and 500 
msec in both simulated networks (Left) and living MEA cultures (Right). Blue arrows indicate expected 

reduction in the variability of probe responses, when using optimal IPIs, compared to using randomly-

timed stimuli preceding a probe. 
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APPE
DIX H 

EFFECTS OF PATTER
ED TRAI
I
G STIMULATIO
 (PTS) O
 


ETWORK SY
APTIC WEIGHTS 

 

 The purpose of this study is to validate the design of patterned training stimulation (PTS) 

described in Chapters 5 and 6 by showing that network synaptic weights could be shaped differently with 

different stimulation parameters. This demonstrates the feasibility of using paired stimuli to “direct” 

network synaptic connectivity, or to train the network to exhibit desired dynamics. However, limited 

combinations of parameters were tested here. In order to answer the questions mentioned above, a more 

thorough investigation on a wider range of possible combinations of stimulation parameters and network 

connectivity is needed. 

H.1 Introduction 

 Paired stimulation of monosynaptically connected neurons induces both long-term 

potentiation (LTP) and long-term depression (LTD) of synapses through spike-timing-

dependent plasticity (STDP). Firing of a postsynaptic neuron immediately after a 

presynaptic neuron results in LTP of synaptic transmission, and the reverse order of firing 

results in LTD (Desmond and Levy, 1983; Gerstner et al., 1996; Markram et al., 1997; Bi 

and Poo, 1998). However, much remains unknown about how cellular plasticity scales to 

affect network population dynamics. Here, I investigated how different stimulation 

protocols affect the network-wide synaptic properties in a biologically-inspired simulated 

network (Chapter 2). Among possible stimulation patterns, I explored a subset of those: 

periodic stimulation delivered at two electrodes with different frequencies, phases, and 

electrode locations. Understanding effects of different stimulation patterns on network 

synaptic properties could help answer some important questions: (1) Whether different 

stimulation patterns have different effects on “shaping” the network? If so, how?  (2) 

Whether these effects are network-specific or more universal? (3) How to determine 

these stimulation parameters in order to obtain the maximal or desired changes in 

network synaptic properties? 
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H.2 Methods 

 A simulated network consisting of 1,000 leaky integrate-and-fire (LIF) neurons 

that exhibits activity patterns similar to those found in cultured cortical neurons was used 

(described in Chapter 2). The effects of three stimulation parameters (frequency, phase, 

and electrode locations) for periodic paired stimulation on network synaptic weights were 

evaluated in several examples. 

H.2.1 Stimulation frequency 

 Stimulation were applied at two electrodes simultaneously (phase= 0) with 

frequencies of 1, 2, 4, 5, 6, 8, 10, 15, 20, 25, 30, 50 or 100 Hz. Two stimulation 

electrodes were selected to be close to each other (electrodes CR13 and CR15, in 

column-row order) in this experiment; a different selection with electrodes far apart was 

also tried (see Section H.2.3). For each frequency, a 2-min simulation was performed 

with the same initial set of synaptic weights. In addition, the self-firing property was 

turned off by removing the Gaussian noise on neurons’ membrane potentials (see Chapter 

2) to prevent unpredictable drifts in network synaptic weights caused by spontaneous 

activity (see Chapter 4). The network was first run for 30 seconds without stimulation 

(Pre period), where all synaptic weights remained unchanged and were used as the 

control baseline. Then paired stimuli with a chosen frequency were delivered for 30 

seconds, followed by a 60-sec period without stimulation (Post period).  

 In order to evaluate the effects of different stimulation frequencies, four quantities 

were calculated from network synaptic weights: 

Summation of synaptic weights 

 In order to monitor the dynamics of overall changes in network synaptic weights 

during stimulation, the summation of synaptic weights of excitatory synapses, ∑(WEX), 
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was measured over time. Weights of inhibitory synapses were excluded from the 

calculation since they were fixed at a constant (see Chapter 2). 

Center of weights (CW) 

 In addition to overall changes in network synaptic weights, CW (see Section 

4.2.2.5 and Equations 4.1 and 4.2) was also measured to evaluate changes in the 

asymmetry of the network synaptic weights distribution.  

Percentage change of synaptic weights 

 The percentage change of ∑(WEX) between Pre and Post periods was calculated, 

which is similar to the calculation used for describing spike-timing-dependent plasticity 

(STDP) between two neurons (see Equation 2.3): 
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W     [Equation H.1] 

 

Summation of absolute normalized changes of synaptic weights 

 Different than ∑(WEX), the summation of absolute normalized changes of 

individual excitatory synaptic weights was measured: 
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/        [Equation H.2] 

 

where t

nW  represents the synaptic weight of synapse n at time step t, and ⋅  represents the 

absolute value. If each pair of stimuli evoked the same activity pattern (spikes arrived at 

synapses with the same timing after each stimulation pair), then ∆W/W for each synapse, 

and thus ∑|∆W/W|, will be a constant due to the STDP rule (see Chapter 2). The 
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dynamics of stimulation-induced effects on synaptic weights, such as decay or saturation, 

can be quantified by the time course of ∑|∆W/W|.  

H.2.2 Stimulation phase 

 The stimuli were applied at two electrodes at 10 Hz with phase differences 

between –50 to 50 msec. Two electrodes (electrodes CR22 and CR72, see Figure H.3A) 

were used in this experiment, a different selection was also tested (see Section H.2.3 and 

Figure H.7A). For each stimulation phase, a 14-sec simulation was performed with the 

same initial set of synaptic weights and with the self-firing property turned off. The 

network was first run for 2 seconds without stimulation (Pre period). Then stimulation 

was applied for 10 seconds (100 pairs of stimuli), followed by another 2-sec period 

without stimulation (Post period). 

 Due to insignificant differences found between different stimulation phases by 

using ∑(WEX)-related measures (data not shown), CW and three other CW-related 

measures were used to evaluate effects of the stimulation phase on network synaptic 

weights. The CW-related measures were: 

Normalized changes of CW components 

 The normalized changes of the X and Y components of CW were calculated to 

quantify the stimulation-induced changes in CW trajectories (CWTs) between Pre and 

Post periods: 
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where Post

XCW  and Post

YCW  represent the X and Y components of CW in the Post period, 

respectively. 

Changing distance of CW 

 The distance between the start point and the end point of CWT (from Pre to Post) 

was measured to quantify the magnitude of the change in the asymmetry of the network 

synaptic weights distribution across stimulation.  

Changing direction of CW 

 The angle of the vector pointing from CW in Pre period to CW in Post period was 

measured to quantify how network synaptic weights redistributed spatially. For example, 

the angle of π/4 radius indicates that network synaptic weights shifts north after 

stimulation. 

H.2.3 Locations of stimulation electrodes 

 In order to investigate how locations of stimulation electrodes affect the results 

found in Sections H.2.1 and H.2.2, the experiments in Sections H.2.1 and H.2.2 were 

repeated with different electrode pairs: from electrodes pair (CR13, CR15) in Section 

H.2.1 to (CR13, CR86), and from electrodes pair (CR22, CR72) in Section H.2.2 to 

(CR22, CR77) (see Figure H.7A), respectively. 

H.3 Results 

H.3.1 
etwork synaptic properties vs. stimulation frequency 

 The time courses of ∑(WEX) and CW are shown in Figures H.1B and H.1C, 

respectively. The percentage changes of ∑(WEX) between Pre and Post periods,  

Δ∑(WEX), is shown in Figure H.1D. 
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 The stimulation frequency of 1 Hz caused a decrease in the summation of weights 

about 4% (Figure H.1D), and frequencies between 2 and 8 Hz caused opposite effects (5 

Hz stimulation caused the most increase of about 10%). These results showed that 

stimulation caused a network-wide increase of synaptic weights (network-wide 

potentiation) within a particular frequency bandwidth; otherwise, network-wide 

depression occurred. Interestingly, at 2 Hz, ∑(WEX) first increased and then decreased 

during the stimulation (t= 30- 60 sec) (Figure H.1B), which indicates that the same 

stimulation pair induced different effects over time (see detailed analysis in Figure H.2). 

Furthermore, CWTs pointed to the west side for the potentiation cases with frequencies 

between 2 and 8 Hz (bluish trajectories in Figure H.1C), and pointed to the northeast 

direction for high frequency stimulation (> 20 Hz). This suggests that stimulation of 

different frequencies also caused different changes in the spatial distribution network 

synaptic weights.  
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Figure H.1. Paired stimulation with different frequencies induced different changes in 

network synaptic weights: Simultaneous stimulation at electrodes CR13 and CR15 with different 
frequencies (A), delivered between t=30 to 60 sec, induced different magnitudes (B) and different 

asymmetries (C) of network synaptic weights. The color code is shared in B and C, which represents the 

stimulation frequency (indicated by the colorbar). In C, CWTs under different stimulation frequencies 

started from the same point that represents the initial network synaptic weights. D. The percentage change 

of ∑(WEX) showed a peak at 5 Hz and decreased as stimulation frequency increased. 

  

 An example, with 5 Hz stimulation, of the time course of the summation of 

absolute normalized changes of excitatory synaptic weights, ∑|∆W/W|, is shown in 

Figure H.2A. During the 30 seconds of stimulation, ∑|∆W/W| continuously decreased 

over time and approached a steady value, ∑steady, in the end. Each time course of 

∑|∆W/W| was fitted with an exponential function (R-square> 0.89 for all frequencies). 

The half-life (τ1/2) and ∑steady for each stimulation frequency are shown in Figures H.2B 

and H.2C, respectively.  
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 The transition of ∑|∆W/W| in the beginning of stimulation suggests that the same 

stimulation pair evoked different activity patterns over time. The convergence of 

∑|∆W/W| to a steady value suggests that the effect of periodic stimulation on network 

synaptic weights gradually became stable. The values of τ1/2 show the fastest 

convergence rate occurred between 2 and 10 Hz (Figure H.2B). The value of ∑steady 

peaked around 5 Hz, and decreased as the frequency increased. 

 

 

Figure H.2. Stimulation frequency around 5 Hz induced the fastest and the highest 

plasticity: A. During the 30 seconds of 5 Hz stimulation, ∑|∆W/W| showed an exponential decay and 

approached a steady value, ∑steady, in the end. Independent to the two different selections of electrodes, 5 

Hz stimulation showed the shortest half-life (τ1/2) (B) and the highest final change (∑steady) (C).  

 

H.3.2 
etwork synaptic properties vs. stimulation phase 

 Stimulation with different phases induced different spatial redistributions of 

network synaptic weights. CWTs from 10 Hz stimulation with different phases are shown 

in Figure H.3. The normalized changes of the X and Y components of CW between Pre 

and Post periods, ∆CWX/CWX and ∆CWY/CWY, are shown in Figure H.4A. For each 

CWT, the vector that pointed from the start point to the end point of the trajectory was 

measured to quantify the change of CW. The changing distance and direction of each 

vector were calculated and plotted versus the stimulation phase (Figure H.4B). The 
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maximal magnitude of the CW change was found with the phase of ± 20 msec. This 

suggests that the simultaneous paired stimulation, such as some tetanization protocols, 

was not the optimal stimulation protocol for inducing asymmetric synaptic weights 

redistribution.  

 With 10 Hz stimulation, the induced CW change with phase= +50 msec was 

different from that with phase= –50 msec (compare the left and right points in Figures 

H.4B and H.8B), even though the stimulation patterns were the same except that the 

stimulation started/ended at different electrodes. This implies that stimulation with the 

same frequency, duration, and phase caused different effects when started/ended at 

different electrodes. This emphasizes the sensitivity of network plasticity to the 

stimulation history, and further suggests that the network memorizes the history of the 

stimulation sequence. 

 

 

Figure H.3. Paired stimulation with different phases induced different changes in network 

synaptic weights distribution: A. The location of the stimulation electrodes (electrodes CR 22 and 
CR72) in an MEA (black square). Stimulation was delivered at 10 Hz with different phases. B. CWTs were 

used to quantify changes in the asymmetry of the network synaptic weights distribution.  
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Figure H.4. Effects of the stimulation phase on CWTs: A. The relation between the stimulation 
phase and the normalized changes of CW components, which are projected at the X and Y planes (grey 

curves). B. The changing distance and direction of CWTs showed an asymmetric relationship with the 

stimulation phase. The maximal magnitude of CW changes occurred at phase= ± 20 msec (indicated by red 

triangles). 

  

 In addition to CW which measures the population changes in synaptic weights, 

the individual weight change of each synapse across the stimulation was measured 

(Figure H.5). Excitatory synaptic weights were summed at the corresponding 

postsynaptic neurons. The neurons that received positive and negative overall synaptic 

inputs are shown separately. In order to understand the underlying mechanisms, further 

verification of the propagation of individual signals within different pathways is needed. 
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Figure H.5. Potentiation and depression of individual neurons: Excitatory synaptic weights were 
summed at the corresponding postsynaptic neurons. The neurons that received positive (potentiation) and 

negative (depression) overall synaptic inputs are shown separately. The magnitudes of potentiation and 

depression are indicated by filled circles with different sizes and colors. 

 

H.3.3 
etwork synaptic properties vs. stimulation electrodes 

 The frequency experiments and the phase experiments were performed on the 

same network but with a different electrode pair (CR13 and CR86). Results from the 

frequency experiment are shown in Figure H.6 (compare to Figure H.1), and results from 

the phase experiment are shown in Figures H.7 and H.8 (compare to Figures H.3 and H.4, 

respectively). Significant differences were found with different stimulation electrodes. 

Interestingly, the measures of τ1/2 and ∑steady appeared to be similar for the frequency 

experiments when two different electrode pairs were used (see Figures H.2B and H.2C). 

However, in order to verify whether this finding is independent of the choice of 
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stimulation electrodes (or further to verify that whether this is independent of the 

connectivity of networks), more experiments are needed. 

 

 

Figure H.6. Paired stimulation with different electrodes showed different frequency 

dependencies: The same representation as in Figure H.1 is used. The frequency effects on network 
synaptic weights were dependent on the selection of stimulation electrodes, in this case, CR13 and CR 86 

(compare to Figure H.1). 
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Figure H.7. Paired stimulation with different electrodes showed different phase 

dependencies: The same representation as in Figure H.3 is used. The phase effects on CWTs were 

dependent on the selection of stimulation electrodes (compare to Figure H.3). CWTs of stimulation with 

only one electrode (electrode CR22 or CR77) are also shown for comparison. 

 

 

Figure H.8. Asymmetric effects of the stimulation phase on CWTs: The same representation as 
in Figure H.4 is used. The phase effects on the changing distance and direction of CWTs were dependent 

on the selection of stimulation electrodes (compare to Figure H.4).  
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H.4 Discussions 

 This study is a proof of concept to demonstrate that the network can be shaped 

into a variety of possible synaptic states by using paired stimulation with different 

stimulation parameters. The main purpose is to validate the use of patterned training 

stimulation (PTS) to direct network plasticity (see Chapters 5 and 6). These experiments 

were performed on one network (starting from the same initial network synaptic state for 

each experiment), so whether these results can be extended as universal phenomena 

remains unknown. A more systematical investigation of different combinations of 

stimulation parameters and network connectivity is needed. 

 For two different selections of electrodes, the frequency that required the least 

time to saturate the effect on the network synaptic change (τ1/2) and to induce the 

maximal steady change (∑steady) was found between 2 and 10 Hz (Figures H.2B and 

H.2C), where the inter-pair intervals were between 200 and 500 msec. This is analogous 

to the inter-PTS interval, which was selected to be between 200 and 400 msec (2.5 to 5 

Hz) for the closed-loop design (see Chapter 5). Moreover, different stimulation phases 

and electrode pairs were found to shape the network synaptic weights distribution 

differently, which validates the design of PTS with different inter-PTS intervals (PTS∆t, 

analogous to the stimulation phase) and electrode locations (PTS-E1 and PTS-E2k) 

described in Chapter 5. 
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APPE
DIX I 

SPATIOTEMPORAL COMPLEXITY OF STIMULATIO
 

PATTER
S 

 

In order to quantify the complexity of the spatiotemporal structure of a 

stimulation sequence, I will use a measure called spatiotemporal complexity (STC), an 

information-based measure (Parrott, 2005). STC is applied to a cube of data, which could 

be a stack of successive spatial “images” in raster format, such as a series of stimuli 

applied at a 2-D MEA (Figure I.1). The result is thus a cube of binary data of dimensions 

@l by @w by t cells, where @l and @w are the length and width of the landscape and t is the 

number of time slices. The measure is then calculated by counting the number of non-

zero contents (blue dots in Figure I.1) in a moving time cube, or a counting cube (red 

cubes in Figure I.1), whose dimensions are considerably smaller than the dimensions of 

the data cube.  

For all of the different possible numbers counted, Mi  ∈ [0, …, @], the relative 

frequency of occurrence is computed and the spatiotemporal complexity of the data is 

calculated as follows: 
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⋅−
=   0< STC< 1    [Equation I.1] 

 

where pi = relative frequency of Mi. Division by ln(@) serves to normalize the measure.  
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Figure I.1. Stimulation with different spatiotemporal patterns: 3-D representations of 1-min 
stimulation patterns from random background stimulation (RBS) to one-channel tetanization (Tet) on an 8 

by 8 grid of electrodes. Each dot represents a stimulus. Examples of counting cubes are shown as red cubes, 

and the stimuli counted within them are shown as blue dots. 

 

The value of STC ranges from 0 for the completely ordered case where only one 

occupation level is observed (equivalent to data of solid zeros or ones) to 1 for the most 

complex case (equivalent to observing all occupation levels with equal frequency). 

Unlike the Shannon entropy for temporal series, the random case does not receive the 

highest value of STC, since, for data of randomly distributed 1’s and 0’s, the average 

occupation of a given counting cube is @/2 and unoccupied or fully occupied counting 

cubes are very unlikely. Thus, for completely random spatiotemporal data, the 

distribution of relative occupation frequencies is normal, giving rise to intermediate 

values of STC. At the other extreme, a very “clumpy” mosaic, with large-sized regularly 

shaped patches would have high frequencies of fully occupied or completely empty 

counting cubes and few intermediate cases. This type of distribution would tend to have 

lower values of STC, being closer to the completely ordered case. The highest values of 



www.manaraa.com

 219 

STC correspond therefore to very “complex” spatiotemporal patterns that consist of 

irregular patches of various sizes. For this type of spatiotemporal dynamics, all 

occupation levels of counting cubes are likely and the frequency distribution is more 

uniform. 

 I calculated STC from various 1-min stimulation patterns: random background 

stimulation (RBS), one-channel tetanization (Tet), and mixtures of RBS and Tet with 

various levels (Mix1 to Mix3) (Figure I.1), where the number of stimuli in different 

stimulation patterns was identical. The results are shown in Figure I.2. STC was higher if 

a stimulation sequence included a larger proportion of RBS and a smaller proportion of 

tetanization. 

 

 

Figure I.2. STC of different stimulation patterns: STC was higher if a stimulation sequence 
included a larger proportion of RBS and a smaller proportion of tetanization (mean and SEM are shown, n= 

50 different sequences for each type of stimulation). 

 

 I hypothesize that the amount of network plasticity could be controlled by the 

spatiotemporal complexity of training stimuli (see Section 7.2.5), where STC becomes 

useful for describing the high-dimensional spatiotemporal pattern of stimuli with a single 

value. By measuring network plasticity induced by stimuli with different STC in 
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simulated or living networks, this relationship might be established. For example, one 

could plot various plasticity measures (see Appendix H) versus the STC of plasticity-

inducing stimuli for simulated networks, or plot C/D of CAT (see Chapter 3) versus the 

STC of plasticity-inducing stimuli for living networks.  
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